Дослідження локального оточення амінодифосфонової кислоти на поверхні ковалентно модифікованого діоксиду кремнію методами РФЕC та 31Р ЯМР спектроскопії
DOI: https://doi.org/10.15407/hftp07.01.020
Анотація
Ключові слова
Посилання
1. Queffelec C., Petit M., Janvier P., Knight D.A., Bujoli B. Surface modification using phosphonic acids and esters. Chem. Rev. 2012. 112(7): 3777. https://doi.org/10.1021/cr2004212
2. Dudarko O.A., Gunathilake C., Sliesarenko V.V., Zub Y.L., Jaroniec M. Microwave-assisted and conventional hydrothermal synthesis of ordered mesoporous silicas with P-containing functionalities. Colloids Surf. A. 2014. 459: 4. https://doi.org/10.1016/j.colsurfa.2014.06.036
3. Jin Y.G., Qiao S.Z., Xu Z.P., Yan Z., Huang Y., Diniz da Costa J.C., Lu G.Q. Phosphonic acid functionalized silicas for intermediate temperature proton conduction. J. Mater. Chem. 2009. 19: 2363. https://doi.org/10.1039/b819379g
4. Bassil J., Roualdes S., Flaud V., Durand J. Plasma-polymerized phosphonic acid-based membranes for fuel cell. J. Memb. Sci. 2014. 461: 1. https://doi.org/10.1016/j.memsci.2014.03.001
5. Pramanik M., Bhaumik A. Phosphonic acid functionalized ordered mesoporous material: a new and ecofriendly catalyst for one-pot multicomponent Biginelli reaction under solvent-free conditions. ACS Appl. Mater. Interfaces. 2014. 6(2): 933. https://doi.org/10.1021/am404298a
6. Yin P., Tian Y., Wang Z., Qu R., Liu X., Xu Q., Tang Q. Synthesis of functionalized silica gel with poly(diethylenetriamine bis(methylenephosphonic acid)) and its adsorption properties of transition metal ions. Mater. Chem. Phys. 2011. 129(1–2): 168. https://doi.org/10.1016/j.matchemphys.2011.03.067
7. Zaytsev V.N., Vasilik L.S., Evans D., Brou A. Synthesis and structure of grafted layer in silicas chemically modified with aminophosphonic acids. Russian Chemical Bulletin. 1999. 12: 2340. [in Russian]. https://doi.org/10.1007/bf02498280
8. Zhang W., He X., Ye G., Yi R., Chen J. Americium(III) capture using phosphonic acid-functionalized silicas with different mesoporous morphologies: adsorption behavior study and mechanism investigation by EXAFS/XPS. Environ. Sci. Technol. 2014. 48(12): 6874. https://doi.org/10.1021/es500563q
9. Shi J., Votruba A.R., Farokhzad O.C., Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010. 10(9): 3223. https://doi.org/10.1021/nl102184c
10. Scheinberg D.A., Villa C.H., Escorcia F.E., McDevitt M.R. Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol. 2010. 7: 266. https://doi.org/10.1038/nrclinonc.2010.38
11. Zaitsev V.N. Complexing silicas: preparation, structure of bonded layer, surface chemistry. (Kharkiv: Folio, 1997). [in Russian].
12. Zaitseva N.V., Kobylinska N.G., Walcarius A., Zaitsev V.N. Speciation of partly oxidized thiol-organosilica surface. Methods and Objects of Chemical Analysis. 2012. 7(2): 60.
13. Mazur M., Barras A., Kuncser V., Galatanu A., Zaitzev V., Turcheniuk K.V., Woisel P., Lyskawa J., Laure W., Siriwardena A., Boukherroub R., Szunerits S. Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors. Nanoscale. 2013. 5(7): 2692. https://doi.org/10.1039/c3nr33506b
14. Motokura K. Synergistic catalysis by multifunctionalized solid surfaces for nucleophilic addition reactions. J. Jpn. Pet. Inst. 2014. 57(3): 95. https://doi.org/10.1627/jpi.57.95
15. Tanaka K., Chujo Y. Design of functionalized nanoparticles for the applications in nanobiotechnology. Adv. Powder Technol. 2014. 25(1): 101. https://doi.org/10.1016/j.apt.2013.07.002
16. Stoltenberg R.M., Liu C., Bao Z. Selective surface chemistry using alumina nanoparticles generated from block copolymers. Langmuir. 2011. 27(1): 445. https://doi.org/10.1021/la104094h
17. Milošev I., Metikoš-Huković M., Petrović Ž. Influence of preparation methods on the properties of self-assembled films of octadecylphosphonate on Nitinol: XPS and EIS studies. Mater. Sci. Eng., C. 2012. 32(8): 2604. https://doi.org/10.1016/j.msec.2012.08.010
18. Pan Y.C., Tsai H.G., Jiang J.C., Kao C.C., Sung T.L. Probing the nature and local structure of phosphonic acid groups functionalized in mesoporous silica SBA-15. J. Phys. Chem. C. 2012. 116(2): 1658. https://doi.org/10.1021/jp206017j
19. Werner M., Rothermel N., Breitzke H., Gutmann T., Buntkowsky G. Recent advances in solid state NMR of small molecules in confinement. Isr. J. Chem. 2014. 54(1–2): 60. https://doi.org/10.1002/ijch.201300095
20. Aiello D., Folliet N., Laurent G., Testa F., Gervais C., Babonneau F., Azaïs T. Solid state NMR characterization of phenylphosphonic acid encapsulated in SBA-15 and aminopropyl-modified SBA-15. Microporous Mesoporous Mater. 2013. 166: 109. https://doi.org/10.1016/j.micromeso.2012.04.028
21. Viornery C., Chevolot Y., Leonard D., Aronsson B.-O., Pechy P., Mathieu H.J., Descouts P., Gratzel M. Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir. 2002. 18(7): 2582. https://doi.org/10.1021/la010908i
22. Textor M., Ruiz L., Hofer R. Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir. 2000. 16(7): 3257. https://doi.org/10.1021/la990941t
23. Quin L.D., Williams A.J. Practical interpretation of P-31 NMR spectra and computer-assisted structure verification. Angew. Chem. Int. Ed. 2004. 44(45): 7331.
24. Deka J. R., Liu C.-L., Wang T.-H., Chang W.-C., Kao H.-M. Synthesis of highly phosphonic acid functionalized benzene-bridgedperiodic mesoporous organosilicas for use as efficient dye adsorbents. J. Hazard. Mater. 2014. 278: 539. https://doi.org/10.1016/j.jhazmat.2014.06.016
25. Zaitsev V.N., Kostenko L.S., Kobylinskaya N.G. Acid–base properties of silica-based ion-exchanger covalently bonded aminodi(methylphosphonic) acid. Anal. Chim. Acta. 2006. 565(2): 157. https://doi.org/10.1016/j.aca.2006.02.030
26. Nahhal M.E. Chehimi M.M., Cordier C., Dodin G. XPS, NMR and FTIR structural characterization of polysiloxane-immobilized amine ligand systems. J. Non-Cryst. Solids. 2000. 275(1–2): 142. https://doi.org/10.1016/S0022-3093(00)00243-X
27. Coelho C., Azaïs T., Bonhomme-Coury L., Maquet J., Bonhomme C. More insight in the structure of silicophosphate gels by 31P-29Si CP MAS multidimensional experiments and 1H-31P-29Si triple resonance experiments. C.R. Chim. 2006. 9(3–4): 472. https://doi.org/10.1016/j.crci.2005.06.025
DOI: https://doi.org/10.15407/hftp07.01.020
Copyright (©) 2016 L. S. Kostenko, A. S. Andreev, J. Fraissard, S. A. Alekseev, V. N. Zaitsev
This work is licensed under a Creative Commons Attribution 4.0 International License.