Хімія, фізика та технологія поверхні, 2016, 7 (1), 20-30.

Дослідження локального оточення амінодифосфонової кислоти на поверхні ковалентно модифікованого діоксиду кремнію методами РФЕC та 31Р ЯМР спектроскопії



DOI: https://doi.org/10.15407/hftp07.01.020

L. S. Kostenko, A. S. Andreev, J. Fraissard, S. A. Alekseev, V. N. Zaitsev

Анотація


Методами рентгенівської фотоелектронної спектроскопії (РФЕС) та ЯМР спектроскопії на ядрах 31P досліджені зразки кремнеземів, що містять на поверхні ковалентно закріплені групи амінодифосфонової кислоти (SiО2–АДФК). Зразки SiО2–АДФК, що отримували за реакцією Кабачника-Філдса обробкою амінопропілкремнезему фосфористою кислотою та формальдегідом, різнилися ступенем перетворення аміногруп в амінофосфонові (59–86%), а також концентрацією закріплених груп (0.33–1.67 мкмоль/м2). Показано, що застосування методу РФЕС дозволяє підтвердити ковалентне закріплення амінофосфонових груп, а також присутність залишкових амінопропільних груп на поверхні SiО2–АДФК. Залежно від ступеня перетворення та концентрації закріплених групп, 31Р ЯМР спектри зразків можуть різнитися як кількістю сигналів, так і їх хімічним зсувом. Така відмінність інтерпретована як результат неоднорідності локального оточення амінодифосфонових груп на поверхні.

Ключові слова


хімічно-модифіковані кремнеземи; амінодифосфонові кислоти; закріплені групи; локальна неоднорідність; твердотільний ЯМР; рентгенівська фотоелектронна спектроскопія

Повний текст:

PDF (Русский)

Посилання


1. Queffelec C., Petit M., Janvier P., Knight D.A., Bujoli B. Surface modification using phosphonic acids and esters. Chem. Rev. 2012. 112(7): 3777. https://doi.org/10.1021/cr2004212

2. Dudarko O.A., Gunathilake C., Sliesarenko V.V., Zub Y.L., Jaroniec M. Microwave-assisted and conventional hydrothermal synthesis of ordered mesoporous silicas with P-containing functionalities. Colloids Surf. A. 2014. 459: 4. https://doi.org/10.1016/j.colsurfa.2014.06.036

3. Jin Y.G., Qiao S.Z., Xu Z.P., Yan Z., Huang Y., Diniz da Costa J.C., Lu G.Q. Phosphonic acid functionalized silicas for intermediate temperature proton conduction. J. Mater. Chem. 2009. 19: 2363. https://doi.org/10.1039/b819379g

4. Bassil J., Roualdes S., Flaud V., Durand J. Plasma-polymerized phosphonic acid-based membranes for fuel cell. J. Memb. Sci. 2014. 461: 1. https://doi.org/10.1016/j.memsci.2014.03.001

5. Pramanik M., Bhaumik A. Phosphonic acid functionalized ordered mesoporous material: a new and ecofriendly catalyst for one-pot multicomponent Biginelli reaction under solvent-free conditions. ACS Appl. Mater. Interfaces. 2014. 6(2): 933. https://doi.org/10.1021/am404298a

6. Yin P., Tian Y., Wang Z., Qu R., Liu X., Xu Q., Tang Q. Synthesis of functionalized silica gel with poly(diethylenetriamine bis(methylenephosphonic acid)) and its adsorption properties of transition metal ions. Mater. Chem. Phys. 2011. 129(1–2): 168. https://doi.org/10.1016/j.matchemphys.2011.03.067

7. Zaytsev V.N., Vasilik L.S., Evans D., Brou A. Synthesis and structure of grafted layer in silicas chemically modified with aminophosphonic acids. Russian Chemical Bulletin. 1999. 12: 2340. [in Russian]. https://doi.org/10.1007/bf02498280

8. Zhang W., He X., Ye G., Yi R., Chen J. Americium(III) capture using phosphonic acid-functionalized silicas with different mesoporous morphologies: adsorption behavior study and mechanism investigation by EXAFS/XPS. Environ. Sci. Technol. 2014. 48(12): 6874. https://doi.org/10.1021/es500563q

9. Shi J., Votruba A.R., Farokhzad O.C., Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010. 10(9): 3223. https://doi.org/10.1021/nl102184c

10. Scheinberg D.A., Villa C.H., Escorcia F.E., McDevitt M.R. Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol. 2010. 7: 266. https://doi.org/10.1038/nrclinonc.2010.38

11. Zaitsev V.N. Complexing silicas: preparation, structure of bonded layer, surface chemistry. (Kharkiv: Folio, 1997). [in Russian].

12. Zaitseva N.V., Kobylinska N.G., Walcarius A., Zaitsev V.N. Speciation of partly oxidized thiol-organosilica surface. Methods and Objects of Chemical Analysis. 2012. 7(2): 60.

13. Mazur M., Barras A., Kuncser V., Galatanu A., Zaitzev V., Turcheniuk K.V., Woisel P., Lyskawa J., Laure W., Siriwardena A., Boukherroub R., Szunerits S. Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors. Nanoscale. 2013. 5(7): 2692. https://doi.org/10.1039/c3nr33506b

14. Motokura K. Synergistic catalysis by multifunctionalized solid surfaces for nucleophilic addition reactions. J. Jpn. Pet. Inst. 2014. 57(3): 95. https://doi.org/10.1627/jpi.57.95

15. Tanaka K., Chujo Y. Design of functionalized nanoparticles for the applications in nanobiotechnology. Adv. Powder Technol. 2014. 25(1): 101. https://doi.org/10.1016/j.apt.2013.07.002

16. Stoltenberg R.M., Liu C., Bao Z. Selective surface chemistry using alumina nanoparticles generated from block copolymers. Langmuir. 2011. 27(1): 445. https://doi.org/10.1021/la104094h

17. Milošev I., Metikoš-Huković M., Petrović Ž. Influence of preparation methods on the properties of self-assembled films of octadecylphosphonate on Nitinol: XPS and EIS studies. Mater. Sci. Eng., C. 2012. 32(8): 2604. https://doi.org/10.1016/j.msec.2012.08.010

18. Pan Y.C., Tsai H.G., Jiang J.C., Kao C.C., Sung T.L. Probing the nature and local structure of phosphonic acid groups functionalized in mesoporous silica SBA-15. J. Phys. Chem. C. 2012. 116(2): 1658. https://doi.org/10.1021/jp206017j

19. Werner M., Rothermel N., Breitzke H., Gutmann T., Buntkowsky G. Recent advances in solid state NMR of small molecules in confinement. Isr. J. Chem. 2014. 54(1–2): 60. https://doi.org/10.1002/ijch.201300095

20. Aiello D., Folliet N., Laurent G., Testa F., Gervais C., Babonneau F., Azaïs T. Solid state NMR characterization of phenylphosphonic acid encapsulated in SBA-15 and aminopropyl-modified SBA-15. Microporous Mesoporous Mater. 2013. 166: 109. https://doi.org/10.1016/j.micromeso.2012.04.028

21. Viornery C., Chevolot Y., Leonard D., Aronsson B.-O., Pechy P., Mathieu H.J., Descouts P., Gratzel M. Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir. 2002. 18(7): 2582. https://doi.org/10.1021/la010908i

22. Textor M., Ruiz L., Hofer R. Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir. 2000. 16(7): 3257. https://doi.org/10.1021/la990941t

23. Quin L.D., Williams A.J. Practical interpretation of P-31 NMR spectra and computer-assisted structure verification. Angew. Chem. Int. Ed. 2004. 44(45): 7331.

24. Deka J. R., Liu C.-L., Wang T.-H., Chang W.-C., Kao H.-M. Synthesis of highly phosphonic acid functionalized benzene-bridgedperiodic mesoporous organosilicas for use as efficient dye adsorbents. J. Hazard. Mater. 2014. 278: 539. https://doi.org/10.1016/j.jhazmat.2014.06.016

25. Zaitsev V.N., Kostenko L.S., Kobylinskaya N.G. Acid–base properties of silica-based ion-exchanger covalently bonded aminodi(methylphosphonic) acid. Anal. Chim. Acta. 2006. 565(2): 157. https://doi.org/10.1016/j.aca.2006.02.030

26. Nahhal M.E. Chehimi M.M., Cordier C., Dodin G. XPS, NMR and FTIR structural characterization of polysiloxane-immobilized amine ligand systems. J. Non-Cryst. Solids. 2000. 275(1–2): 142. https://doi.org/10.1016/S0022-3093(00)00243-X

27. Coelho C., Azaïs T., Bonhomme-Coury L., Maquet J., Bonhomme C. More insight in the structure of silicophosphate gels by 31P-29Si CP MAS multidimensional experiments and 1H-31P-29Si triple resonance experiments. C.R. Chim. 2006. 9(3–4): 472. https://doi.org/10.1016/j.crci.2005.06.025 




DOI: https://doi.org/10.15407/hftp07.01.020

Copyright (©) 2016 L. S. Kostenko, A. S. Andreev, J. Fraissard, S. A. Alekseev, V. N. Zaitsev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.