Синтез і магнітні характеристики кристалічних наночастинок твердих розчинів (Fe1-xZnx)Fe2O4
DOI: https://doi.org/10.15407/hftp07.02.133
Анотація
Ключові слова
Посилання
1. Chu X., Liu X., Meng G. Preparation and gas sensitivity properties of ZnFe2O4 semiconductors. Sens. Actuators, B. 1999. 55(1): 19. https://doi.org/10.1016/S0925-4005(99)00269-5
2. Ahmed M.A., Alonso L., Palacios J.M., Cilleruelo C., Abanades J.C. Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization. Solid State Ionics. 2000. 138(1–2): 51. https://doi.org/10.1016/S0167-2738(00)00783-9
3. Gorbyk P.P., Dubrovin I.V., Demchenko Yu.A. Synthesis and characterisation of hollow spherical nano- and microparticles with silica and magnetite. Nanomaterials and Supramolecular Structures. 2009. 16: 207. https://doi.org/10.1007/978-90-481-2309-4_16
4 .Wan J., Jiang X., Li H., Chen K. Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T1 MRI contrast agents. J. Mater. Chem. 2012. 22: 13500. https://doi.org/10.1039/c2jm30684k
5 .Albuquerque A.S., Ardisson J.D., Bittencourt E., Macedo W.A.A. Structure and magnetic properties of granular NiZn-ferrite-SiO2. Mater. Res. 1999. 2(3): 235. https://doi.org/10.1590/S1516-14391999000300021
6. Kumar G.S.Y., Naik H.S.B., Roy A.S., Harish K.N., Viswanath R. Synthesis, optical and electrical properties of ZnFe2O4 nanocomposites. Nanotechnology and Nanomaterials. 2012. 2: 238.
7. Mekap A., Das P.R., Choudhary R.N.P. Dielectric, magnetic and electrical properties of ZnFe2O4 ceramics. J. Mater. Sci. Mater. Electron. 2013. 24(12): 4757. https://doi.org/10.1007/s10854-013-1470-1
8. Gama A.M., Rezende M.C. Complex permeability and permittivity variation of radar absorbing materials based on MnZn ferrite in microwave frequencies. Mater. Res. 2013. 16(5): 997. https://doi.org/10.1590/S1516-14392013005000077
9. Yelenich O.V., Solopan S.O., Kolodiazhnyi T.V., Dzyublyuk V.V., Tovstolytkin A.I., Belous A.G. Magnetic properties and high heating efficiency of ZnFe2O4 nanoparticles. Mater. Chem. Phys. 2014. 146(1–2): 129. https://doi.org/10.1016/j.matchemphys.2014.03.010
10. Toledo-Antonio J.A., Nava N., Martinez M., Bokhimi X. Correlation between the magnetism of non-stoichiometric zinc ferrites and their catalytic activity for oxidative dehydrogenation of 1-butene. Appl. Catal.: A. 2002. 234(1–2): 137. https://doi.org/10.1016/S0926-860X(02)00212-0
11. Casbeer E., Sharma V.K., Li X.Z. Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 2012. 87: 1. https://doi.org/10.1016/j.seppur.2011.11.034
12. Wang G.P., Song E.Q., Xie H.Y., Zhang Zh.L., Tian Zh.Q., Zuo Ch., Pang D.W., Wu D.Ch., Shi Y.B. Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications. Chem. Commun. 2005. 34: 4276. https://doi.org/10.1039/b508075d
13. Hochepied J.F, Pileni M.P Ferromagnetic resonance of nonstoichiometric zinc ferrite and cobalt-doped zinc ferrite nanoparticles. J. Magn. Magn. Mater. 2001. 231(1): 45. https://doi.org/10.1016/S0304-8853(01)00044-0
14. Singh J.P., Srivastava R.C., Agrawal H.M., Chand P., Kumar R. Observation of size dependent attributes on the magnetic resonance of irradiated zinc ferrite nanoparticles. Curr. Appl. Phys. 2011. 11(3): 532. https://doi.org/10.1016/j.cap.2010.09.009
15. Shahraki R.R., Ebrahimi M., Ebrahimi S.A.S., Masoudpanah S.M. Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J. Magn. Magn. Mater. 2012. 324(22): 3762. https://doi.org/10.1016/j.jmmm.2012.06.020
16. Gharagozlou M., Bayati R. Low temperature processing and magnetic properties of zinc ferrite nanoparticles. Superlattices Microstruct. 2015. 78: 190. https://doi.org/10.1016/j.spmi.2014.12.004
17. Pandey B., Litterst F.J., Baggio-Saitovitch E.M. Preferential spin canting in nanosize zinc ferrite. J. Magn. Magn. Mater. 2015. 385: 412. https://doi.org/10.1016/j.jmmm.2015.03.049
18. Raghavan L., Pookat G., Thomas H., Ojha S., Avasthi D.K., Anantharaman M.R. Room temperature ferrimagnetism and low temperature disorder effects in zinc ferrite thin films. J. Magn. Magn. Mater. 2015. 385: 265. https://doi.org/10.1016/j.jmmm.2015.03.030
19. Lopez-Maldonado K.L., Presa P., Betancourt I., Mancilla J.R.F., Aquino J.A.M., Hernando A., Galindo J.T.E. Superparamagnetic response of zinc ferrite incrusted nanoparticles. J. Alloys and Compounds. 2015. 637: 443. https://doi.org/10.1016/j.jallcom.2015.03.023
20. Cabanas A., Poliako M. The Continuous Hydrothermal Synthesis of Nano-Particulate Ferrites in Near Critical and Supercritical Water. J. Mater. Chem. 2001. 11: 1408. https://doi.org/10.1039/b009428p
21. Bensebaa F., Zavaliche F., Ecuyer P.L., Cochrane R.W., Veres T. Microwave synthesis and characterization of Co-ferrite nanoparticles. J. Colloid Interface Sci. 2004. 277(1): 104. https://doi.org/10.1016/j.jcis.2004.04.016
22. Naseri M.G., Saion E.B., Hashim M., Shaari A.H., Ahangar H.A. Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun. 2011. 151(14–15): 1031. https://doi.org/10.1016/j.ssc.2011.04.018
23. Kaur M., Randhawa B.S., Singh J., Utreja D. Thermolysis studies on magnesium zinc bis(citrato)ferrate pentahydrate precursor for synthesis of ferrite nanoparticles. Ceram. Int. 2013. 39(3): 3453. https://doi.org/10.1016/j.ceramint.2012.10.007
24. Chen D., Li L., Wang J. One-step synthesis of zinc ferrite nanoparticles by ultrasonic wave-assisted ball milling technology. Ceram. Int. 2013. 39(4): 4669. https://doi.org/10.1016/j.ceramint.2012.10.247
25. Surinwong S., Rujiwatra A. Ultrasonic cavitation assisted solvothermal synthesis of superparamagnetic zinc ferrite nanoparticles. Particuology. 2013. 11(5): 588. https://doi.org/10.1016/j.partic.2012.06.008
26. Kurian M., Nair D.S. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combust ion and co-precipitation methods. J. Saudi Chem. Soc. 2013. https://doi.org/10.1016/j.jscs.2013.03.003
27. Tadjarodi A., Salehi M., Imani M. Innovative one pot synthesis method of the magnetic zinc ferrite nanoparticles with a superior adsorption performance. Mater. Lett. 2015. 152: 57. https://doi.org/10.1016/j.matlet.2015.03.016
28. Zare S., Ati A.A., Dabagh S., Rosnan R.M., Othaman Z. Synthesis, structural and magnetic behavior studies of Zn–Al substituted cobalt ferrite nanoparticles. J. Mol. Struct. 2015. 1089: 25. https://doi.org/10.1016/j.molstruc.2015.02.006
29. Hochepied J.F., Pileni M.P. Ferromagnetic resonance of nonstoichiometric zinc ferrite and cobalt-doped zinc ferrite nanoparticles. J. Magn. Magn. Mat. 2001. 231(1): 45. https://doi.org/10.1016/S0304-8853(01)00044-0
30. Hochepied J.F., Sainctavit Ph., Pileni M.P. X-ray absorption spectra and X-ray magnetic circular dichroism studies at Fe and Co L2,3 edges of mixed cobalt–zinc ferrite nanoparticles: cationic repartition, magnetic structure and hysteresis cycles. J. Magn. Magn. Mater. 2001. 231(2–3): 315. https://doi.org/10.1016/S0304-8853(01)00182-2
31. Poddar P., Srikanth H., Morrison S.A., Carpente E.E. Inter-particle interactions and magnetism in manganese–zinc ferrite nanoparticles. J. Magn. Magn. Mater. 2005. 288: 443. https://doi.org/10.1016/j.jmmm.2004.09.135
32. Annveer A.K., Arora M., Yadav M.S., Panta R.P. Induced size effect on Ni doped Nickel Zinc Ferrite Nanoparticles. Physics Procedia. 2010. 9: 20. https://doi.org/10.1016/j.phpro.2010.11.006
33. Singh J.P., Srivastava R.C., Agrawal H.M., Chand P., Kumar R. Observation of size dependent attributes on the magnetic resonance of irradiated zinc ferrite nanoparticles. Curr. Appl. Phys. 2011. 11(3): 532. https://doi.org/10.1016/j.cap.2010.09.009
34. Teixeira A.M.R.F, Ogasawara T., Nóbrega M.C.S. Investigation of sintered cobalt-zinc ferrite synthesized by coprecipitation at different temperatures: A relation between microstructure and hysteresis curves. Mater. Res. 2006. 9(3): 257. https://doi.org/10.1590/S1516-14392006000300003
35. Li Q., Bo C., Wang W. Preparation and magnetic properties of ZnFe2O4 nanofibers by coprecipitation – Air oxidation method. Mater. Chem. Phys. 2010. 124(2–3): 891. https://doi.org/10.1016/j.matchemphys.2010.07.058
36. Liu H., Guo Y., Zhang Y., Wu F., Liu Y., Zhang D. Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure. Mater. Sci. Eng. B. 2013. 178(16): 1057. https://doi.org/10.1016/j.mseb.2013.06.012
37. Jesus C.B.R., Mendonça E.C., Silva L.S., Folly W.S.D., Meneses C.T., Duque J.G.S. Weak ferromagnetic component on the bulk ZnFe2O4 compound. J. Magn. Magn. Mater. 2014. 350: 47 https://doi.org/10.1016/j.jmmm.2013.09.025
38. Patil J.Y., Nadargi D.Y., Gurav J.L., Mulla I.S., Suryavanshi S.S. Glycine combusted ZnFe2O4 gas sensor: Evaluation of structural, morphological and gas response properties. Ceram. Int. 2014. 40(7): 10607. https://doi.org/10.1016/j.ceramint.2014.03.041
39. Costa A.C.F.M., Tortella E., Neto E.F., Morelli M.R., Kiminami R.H.G.A. Sintering of Ni-Zn ferrite nanopowders by the constant heating rate (CHR) method. Mater. Res. 2004. 7(4): 523. https://doi.org/10.1590/S1516-14392004000400003
40. Dantas J., Santos J.R.D., Cunha R.B.L., Kiminami R.H.G.A., Costa A.C.F.M. Use of Ni-Zn ferrites doped with Cu as catalyst in the transesterification of soybean oil to methyl esters. Mater. Res. 2013. 16(3): 625. https://doi.org/10.1590/S1516-14392013005000031
41. Han L., Zhou X., Wan L., Deng Y., Zhan S. Synthesis of ZnFe2O4 nanoplates by succinic acid-assisted hydrothermal route and their photocatalytic degradation of rhodamine B under visible light. J. Environ. Chem. Eng. 2014. 2(1):123. https://doi.org/10.1016/j.jece.2013.11.031
42. Blanco-Gutierrez V., Climent-Pascua E., Torralvo-Fernandez M.J., Saez-Puche R., Fernandez-Diaz M.T. Neutron diffraction study and superparamagnetic behavior of ZnFe2O4 nanoparticles obtained with different conditions. J. Solid State Chem. 2011. 184(7): 1608. https://doi.org/10.1016/j.jssc.2011.04.034
43. Banerjee A., Bid S., Dutta H., Chaudhuri S., Das D., Pradhan S.K. Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling. Mater. Res. 2012. 15(6): 1022. https://doi.org/10.1590/S1516-14392012005000135
44. Mohai I., Szépvölgyi J., Bertóti I., Mohai M., Gubicza J., Ungár T. Thermal plasma synthesis of zinc ferrite nanopowders. Solid State Ionics. 2001. 141: 163. https://doi.org/10.1016/S0167-2738(01)00770-6
45. Cao Y., Jia D., Hu P., Wang R. One-step room-temperature solid-phase synthesis of ZnFe2O4 nanomaterials and its excellent gas-sensing property. Ceram. Int. 2013. 39(3): 2989. https://doi.org/10.1016/j.ceramint.2012.09.076
46. Manikandan A., Kennedy L.J., Bououdina M., Vijaya J.J. Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater. 2014. 349:249. https://doi.org/10.1016/j.jmmm.2013.09.013
47. Lobaz V.R. Ph. D. (Chem.) Thesis. (Lviv, 2006). [in Ukrainian].
Cote L.J., Teja A.S., Wilkinson A.P. and Zhang Z.J. Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilib. 2003. 210(2): 307. https://doi.org/10.1016/S0378-3812(03)00168-7
48. Borisenko N.V., Bogatyrev V.M., Dubrovin I.V., Abramov N.V., Gayevaya M.V., Gorbik P.P. Sintez i svoystva magnitochustvitel'nykh nanokompozitov na osnove oksidov zheleza i kremniya. Sbornik trudov pod red. A.P. Shpaka i P.P. Gorbika «Fiziko-khimiya nanomaterialov i supramolekulyarnykh struktur». 2007. 1: 394. [in Russian].
49. Gatta G.D., Kantor I., Ballaran T.B., Dubrovinsky L., McCammon C. Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: an in situ single-crystal X-ray diffraction study Locality: synthetic Sample: P = 0.0001 GPa, T = 293 K. Phys. Chem. Miner. 2007. 34: 627. https://doi.org/10.1007/s00269-007-0177-3
50. Levy D., Pavese A., Hanfland M. Phase transition of synthetic zinc ferrite spinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction Sample: P = 0.0 GPa. Phys. Chem. Miner. 2000. 27: 638. https://doi.org/10.1007/s002690000117
51. Day C.M., Selbin J. Theoretical Inorganic Chemitry. (New York, Amsterdam, London: Reingold Book Corporation, 1962) 568 p.
52. Krupicka S. Physik der Ferrite und der verwandten magnetischen Oxide. (Verlag der Tschechoslowakischen Akademie der Wissenschaften, 1973). https://doi.org/10.1007/978-3-322-83522-2
53. Smit J., Wijn H. P. Ferrites. (New York: John, Wiley and Sons, 1959).
54. Hastings J.M., Corliss L.M. Neutron Diffraction Studies of Zinc Ferrite and Nickel Ferrite. Rev. Mod. Phys. 1953. 25: 114. https://doi.org/10.1103/RevModPhys.25.114
55. Sitidze Yu., Sato Kh. Ferrity [Ferrites]. (Moskow: Mir, 1964). [in Russian].
56. Guillaud C., Creveaux H. Proprietes ferromagnetiques des ferrites mixte de cobalt et de zinc et de manganese et de zinc. Compt. Rend. Acad. Sci. Paris. 1950. 230: 1458.
57. Gorter E.W. Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Research Reports. 1954. 9: 295.
58. Neel L. Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. Paris. 1948. 3: 137.
DOI: https://doi.org/10.15407/hftp07.02.133
Copyright (©) 2016 P. P. Gorbyk, I. V. Dubrovin, M. V. Abramov
This work is licensed under a Creative Commons Attribution 4.0 International License.