Хімія, фізика та технологія поверхні, 2016, 7 (2), 133-144.

Синтез і магнітні характеристики кристалічних наночастинок твердих розчинів (Fe1-xZnx)Fe2O4



DOI: https://doi.org/10.15407/hftp07.02.133

P. P. Gorbyk, I. V. Dubrovin, M. V. Abramov

Анотація


Модифікованою методикою Ельмора синтезовано матеріал, що складається з наночастинок твердого розчину (Fe1-xZnx)Fe2O4. З використанням рентгенофазового аналізу, растрової електронної мікроскопії і аналізу питомої поверхні встановлено фазовий склад, структуру і морфологію магнітних наночастинок. Показано, що корегування їх розміру може бути ефективно здійснене за допомогою гідротермальної рекристалізації. Виявлено, що шляхом зміни концентрації цинку в твердому розчині системи Fe3O4 – ZnFe2O4 можна одержати нанодисперсний матеріал з заданими (у певних межах) значеннями намагніченості насичення і коерцитивної сили.

Ключові слова


методика Ельмора; гідротермальна рекристалізація; цинковий ферит; петля гістерезису; намагніченість насичення

Повний текст:

PDF

Посилання


1. Chu X., Liu X., Meng G. Preparation and gas sensitivity properties of ZnFe2O4 semiconductors. Sens. Actuators, B. 1999. 55(1): 19. https://doi.org/10.1016/S0925-4005(99)00269-5

2. Ahmed M.A., Alonso L., Palacios J.M., Cilleruelo C., Abanades J.C. Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization. Solid State Ionics. 2000. 138(1–2): 51. https://doi.org/10.1016/S0167-2738(00)00783-9

3. Gorbyk P.P., Dubrovin I.V., Demchenko Yu.A. Synthesis and characterisation of hollow spherical nano- and microparticles with silica and magnetite. Nanomaterials and Supramolecular Structures. 2009. 16: 207. https://doi.org/10.1007/978-90-481-2309-4_16

4 .Wan J., Jiang X., Li H., Chen K. Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T1 MRI contrast agents. J. Mater. Chem. 2012. 22: 13500. https://doi.org/10.1039/c2jm30684k

5 .Albuquerque A.S., Ardisson J.D., Bittencourt E., Macedo W.A.A. Structure and magnetic properties of granular NiZn-ferrite-SiO2. Mater. Res. 1999. 2(3): 235. https://doi.org/10.1590/S1516-14391999000300021

6. Kumar G.S.Y., Naik H.S.B., Roy A.S., Harish K.N., Viswanath R. Synthesis, optical and electrical properties of ZnFe2O4 nanocomposites. Nanotechnology and Nanomaterials. 2012. 2: 238.

7. Mekap A., Das P.R., Choudhary R.N.P. Dielectric, magnetic and electrical properties of ZnFe2O4 ceramics. J. Mater. Sci. Mater. Electron. 2013. 24(12): 4757. https://doi.org/10.1007/s10854-013-1470-1

8. Gama A.M., Rezende M.C. Complex permeability and permittivity variation of radar absorbing materials based on MnZn ferrite in microwave frequencies. Mater. Res. 2013. 16(5): 997. https://doi.org/10.1590/S1516-14392013005000077

9. Yelenich O.V., Solopan S.O., Kolodiazhnyi T.V., Dzyublyuk V.V., Tovstolytkin A.I., Belous A.G. Magnetic properties and high heating efficiency of ZnFe2O4 nanoparticles. Mater. Chem. Phys. 2014. 146(1–2): 129. https://doi.org/10.1016/j.matchemphys.2014.03.010

10. Toledo-Antonio J.A., Nava N., Martinez M., Bokhimi X. Correlation between the magnetism of non-stoichiometric zinc ferrites and their catalytic activity for oxidative dehydrogenation of 1-butene. Appl. Catal.: A. 2002. 234(1–2): 137. https://doi.org/10.1016/S0926-860X(02)00212-0

11. Casbeer E., Sharma V.K., Li X.Z. Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 2012. 87: 1. https://doi.org/10.1016/j.seppur.2011.11.034

12. Wang G.P., Song E.Q., Xie H.Y., Zhang Zh.L., Tian Zh.Q., Zuo Ch., Pang D.W., Wu D.Ch., Shi Y.B. Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications. Chem. Commun. 2005. 34: 4276. https://doi.org/10.1039/b508075d

13. Hochepied J.F, Pileni M.P Ferromagnetic resonance of nonstoichiometric zinc ferrite and cobalt-doped zinc ferrite nanoparticles. J. Magn. Magn. Mater. 2001. 231(1): 45. https://doi.org/10.1016/S0304-8853(01)00044-0

14. Singh J.P., Srivastava R.C., Agrawal H.M., Chand P., Kumar R. Observation of size dependent attributes on the magnetic resonance of irradiated zinc ferrite nanoparticles. Curr. Appl. Phys. 2011. 11(3): 532. https://doi.org/10.1016/j.cap.2010.09.009

15. Shahraki R.R., Ebrahimi M., Ebrahimi S.A.S., Masoudpanah S.M. Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method. J. Magn. Magn. Mater. 2012. 324(22): 3762. https://doi.org/10.1016/j.jmmm.2012.06.020

16. Gharagozlou M., Bayati R. Low temperature processing and magnetic properties of zinc ferrite nanoparticles. Superlattices Microstruct. 2015. 78: 190. https://doi.org/10.1016/j.spmi.2014.12.004

17. Pandey B., Litterst F.J., Baggio-Saitovitch E.M. Preferential spin canting in nanosize zinc ferrite. J. Magn. Magn. Mater. 2015. 385: 412. https://doi.org/10.1016/j.jmmm.2015.03.049

18. Raghavan L., Pookat G., Thomas H., Ojha S., Avasthi D.K., Anantharaman M.R. Room temperature ferrimagnetism and low temperature disorder effects in zinc ferrite thin films. J. Magn. Magn. Mater. 2015. 385: 265. https://doi.org/10.1016/j.jmmm.2015.03.030

19. Lopez-Maldonado K.L., Presa P., Betancourt I., Mancilla J.R.F., Aquino J.A.M., Hernando A., Galindo J.T.E. Superparamagnetic response of zinc ferrite incrusted nanoparticles. J. Alloys and Compounds. 2015. 637: 443. https://doi.org/10.1016/j.jallcom.2015.03.023

20. Cabanas A., Poliako M. The Continuous Hydrothermal Synthesis of Nano-Particulate Ferrites in Near Critical and Supercritical Water. J. Mater. Chem. 2001. 11: 1408. https://doi.org/10.1039/b009428p

21. Bensebaa F., Zavaliche F., Ecuyer P.L., Cochrane R.W., Veres T. Microwave synthesis and characterization of Co-ferrite nanoparticles. J. Colloid Interface Sci. 2004. 277(1): 104. https://doi.org/10.1016/j.jcis.2004.04.016

22. Naseri M.G., Saion E.B., Hashim M., Shaari A.H., Ahangar H.A. Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun. 2011. 151(14–15): 1031. https://doi.org/10.1016/j.ssc.2011.04.018

23. Kaur M., Randhawa B.S., Singh J., Utreja D. Thermolysis studies on magnesium zinc bis(citrato)ferrate pentahydrate precursor for synthesis of ferrite nanoparticles. Ceram. Int. 2013. 39(3): 3453. https://doi.org/10.1016/j.ceramint.2012.10.007

24. Chen D., Li L., Wang J. One-step synthesis of zinc ferrite nanoparticles by ultrasonic wave-assisted ball milling technology. Ceram. Int. 2013. 39(4): 4669. https://doi.org/10.1016/j.ceramint.2012.10.247

25. Surinwong S., Rujiwatra A. Ultrasonic cavitation assisted solvothermal synthesis of superparamagnetic zinc ferrite nanoparticles. Particuology. 2013. 11(5): 588. https://doi.org/10.1016/j.partic.2012.06.008

26. Kurian M., Nair D.S. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combust ion and co-precipitation methods. J. Saudi Chem. Soc. 2013. https://doi.org/10.1016/j.jscs.2013.03.003 

27. Tadjarodi A., Salehi M., Imani M. Innovative one pot synthesis method of the magnetic zinc ferrite nanoparticles with a superior adsorption performance. Mater. Lett. 2015. 152: 57. https://doi.org/10.1016/j.matlet.2015.03.016

28. Zare S., Ati A.A., Dabagh S., Rosnan R.M., Othaman Z. Synthesis, structural and magnetic behavior studies of Zn–Al substituted cobalt ferrite nanoparticles. J. Mol. Struct. 2015. 1089: 25. https://doi.org/10.1016/j.molstruc.2015.02.006

29. Hochepied J.F., Pileni M.P. Ferromagnetic resonance of nonstoichiometric zinc ferrite and cobalt-doped zinc ferrite nanoparticles. J. Magn. Magn. Mat. 2001. 231(1): 45. https://doi.org/10.1016/S0304-8853(01)00044-0

30. Hochepied J.F., Sainctavit Ph., Pileni M.P. X-ray absorption spectra and X-ray magnetic circular dichroism studies at Fe and Co L2,3 edges of mixed cobalt–zinc ferrite nanoparticles: cationic repartition, magnetic structure and hysteresis cycles. J. Magn. Magn. Mater. 2001. 231(2–3): 315. https://doi.org/10.1016/S0304-8853(01)00182-2

31. Poddar P., Srikanth H., Morrison S.A., Carpente E.E. Inter-particle interactions and magnetism in manganese–zinc ferrite nanoparticles. J. Magn. Magn. Mater. 2005. 288: 443. https://doi.org/10.1016/j.jmmm.2004.09.135

32. Annveer A.K., Arora M., Yadav M.S., Panta R.P. Induced size effect on Ni doped Nickel Zinc Ferrite Nanoparticles. Physics Procedia. 2010. 9: 20. https://doi.org/10.1016/j.phpro.2010.11.006

33. Singh J.P., Srivastava R.C., Agrawal H.M., Chand P., Kumar R. Observation of size dependent attributes on the magnetic resonance of irradiated zinc ferrite nanoparticles. Curr. Appl. Phys. 2011. 11(3): 532. https://doi.org/10.1016/j.cap.2010.09.009

34. Teixeira A.M.R.F, Ogasawara T., Nóbrega M.C.S. Investigation of sintered cobalt-zinc ferrite synthesized by coprecipitation at different temperatures: A relation between microstructure and hysteresis curves. Mater. Res. 2006. 9(3): 257. https://doi.org/10.1590/S1516-14392006000300003

35. Li Q., Bo C., Wang W. Preparation and magnetic properties of ZnFe2O4 nanofibers by coprecipitation – Air oxidation method. Mater. Chem. Phys. 2010. 124(2–3): 891.  https://doi.org/10.1016/j.matchemphys.2010.07.058 

36. Liu H., Guo Y., Zhang Y., Wu F., Liu Y., Zhang D. Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure. Mater. Sci. Eng. B. 2013. 178(16): 1057. https://doi.org/10.1016/j.mseb.2013.06.012

37. Jesus C.B.R., Mendonça E.C., Silva L.S., Folly W.S.D., Meneses C.T., Duque J.G.S. Weak ferromagnetic component on the bulk ZnFe2O4 compound. J. Magn. Magn. Mater. 2014. 350: 47 https://doi.org/10.1016/j.jmmm.2013.09.025

38. Patil J.Y., Nadargi D.Y., Gurav J.L., Mulla I.S., Suryavanshi S.S. Glycine combusted ZnFe2O4 gas sensor: Evaluation of structural, morphological and gas response properties. Ceram. Int. 2014. 40(7): 10607. https://doi.org/10.1016/j.ceramint.2014.03.041

39. Costa A.C.F.M., Tortella E., Neto E.F., Morelli M.R., Kiminami R.H.G.A. Sintering of Ni-Zn ferrite nanopowders by the constant heating rate (CHR) method. Mater. Res. 2004. 7(4): 523. https://doi.org/10.1590/S1516-14392004000400003

40. Dantas J., Santos J.R.D., Cunha R.B.L., Kiminami R.H.G.A., Costa A.C.F.M. Use of Ni-Zn ferrites doped with Cu as catalyst in the transesterification of soybean oil to methyl esters. Mater. Res. 2013. 16(3): 625. https://doi.org/10.1590/S1516-14392013005000031

41. Han L., Zhou X., Wan L., Deng Y., Zhan S. Synthesis of ZnFe2O4 nanoplates by succinic acid-assisted hydrothermal route and their photocatalytic degradation of rhodamine B under visible light. J. Environ. Chem. Eng. 2014. 2(1):123. https://doi.org/10.1016/j.jece.2013.11.031

42. Blanco-Gutierrez V., Climent-Pascua E., Torralvo-Fernandez M.J., Saez-Puche R., Fernandez-Diaz M.T. Neutron diffraction study and superparamagnetic behavior of ZnFe2O4 nanoparticles obtained with different conditions. J. Solid State Chem. 2011. 184(7): 1608. https://doi.org/10.1016/j.jssc.2011.04.034

43. Banerjee A., Bid S., Dutta H., Chaudhuri S., Das D., Pradhan S.K. Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling. Mater. Res. 2012. 15(6): 1022. https://doi.org/10.1590/S1516-14392012005000135

44. Mohai I., Szépvölgyi J., Bertóti I., Mohai M., Gubicza J., Ungár T. Thermal plasma synthesis of zinc ferrite nanopowders. Solid State Ionics. 2001. 141: 163. https://doi.org/10.1016/S0167-2738(01)00770-6

45. Cao Y., Jia D., Hu P., Wang R. One-step room-temperature solid-phase synthesis of ZnFe2O4 nanomaterials and its excellent gas-sensing property. Ceram. Int. 2013. 39(3): 2989. https://doi.org/10.1016/j.ceramint.2012.09.076

46. Manikandan A., Kennedy L.J., Bououdina M., Vijaya J.J. Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater. 2014. 349:249. https://doi.org/10.1016/j.jmmm.2013.09.013

47. Lobaz V.R. Ph. D. (Chem.) Thesis. (Lviv, 2006). [in Ukrainian].

Cote L.J., Teja A.S., Wilkinson A.P. and Zhang Z.J. Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilib. 2003. 210(2): 307. https://doi.org/10.1016/S0378-3812(03)00168-7

48. Borisenko N.V., Bogatyrev V.M., Dubrovin I.V., Abramov N.V., Gayevaya M.V., Gorbik P.P. Sintez i svoystva magnitochustvitel'nykh nanokompozitov na osnove oksidov zheleza i kremniya. Sbornik trudov pod red. A.P. Shpaka i P.P. Gorbika «Fiziko-khimiya nanomaterialov i supramolekulyarnykh struktur». 2007. 1: 394. [in Russian].

49. Gatta G.D., Kantor I., Ballaran T.B., Dubrovinsky L., McCammon C. Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: an in situ single-crystal X-ray diffraction study Locality: synthetic Sample: P = 0.0001 GPa, T = 293 K. Phys. Chem. Miner. 2007. 34: 627. https://doi.org/10.1007/s00269-007-0177-3

50. Levy D., Pavese A., Hanfland M. Phase transition of synthetic zinc ferrite spinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction Sample: P = 0.0 GPa. Phys. Chem. Miner. 2000. 27: 638. https://doi.org/10.1007/s002690000117

51. Day C.M., Selbin J. Theoretical Inorganic Chemitry. (New York, Amsterdam, London: Reingold Book Corporation, 1962) 568 p.

52. Krupicka S. Physik der Ferrite und der verwandten magnetischen Oxide. (Verlag der Tschechoslowakischen Akademie der Wissenschaften, 1973). https://doi.org/10.1007/978-3-322-83522-2

53. Smit J., Wijn H. P. Ferrites. (New York: John, Wiley and Sons, 1959).

54. Hastings J.M., Corliss L.M. Neutron Diffraction Studies of Zinc Ferrite and Nickel Ferrite. Rev. Mod. Phys. 1953. 25: 114. https://doi.org/10.1103/RevModPhys.25.114

55. Sitidze Yu., Sato Kh. Ferrity [Ferrites]. (Moskow: Mir, 1964). [in Russian].

56. Guillaud C., Creveaux H. Proprietes ferromagnetiques des ferrites mixte de cobalt et de zinc et de manganese et de zinc. Compt. Rend. Acad. Sci. Paris. 1950. 230: 1458.

57. Gorter E.W. Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Research Reports. 1954. 9: 295.

58. Neel L. Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. Paris. 1948. 3: 137.




DOI: https://doi.org/10.15407/hftp07.02.133

Copyright (©) 2016 P. P. Gorbyk, I. V. Dubrovin, M. V. Abramov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.