Хімія, фізика та технологія поверхні, 2016, 7 (2), 175-185.

Визначення параметрів субдиффузійного рівняння на підставі даних SPT експерименту



DOI: https://doi.org/10.15407/hftp07.02.175

V. P. Shkilev, V. V. Lobanov

Анотація


В рамках узагальненої моделі багаторазового захоплення одержано вирази для середньоквадратичного зсуву частинок, усередненого за часом і по ансамблю. Отримані вирази можуть бути використані для визначення параметрів субдифузійного рівняння на підставі даних SPT (single particle tracking) експерименту.

Ключові слова


стаціонарна субдиффузія; нестаціонарна субдиффузія; модель багаторазового захоплення; модель випадкових бар'єрів; середньоквадратичний зсув

Повний текст:

PDF (Русский)

Посилання


1. Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 2004. 37(31): R161. https://doi.org/10.1088/0305-4470/37/31/R01

2. Klages R., Radons G., Sokolov I.M. Anomalous Transport: Foundations and Applications. (Weinheim: Wiley-VCH, 2007).

3. Mendez V., Fedotov S., Horsthemke W. Reaction-Transport Systems: Mesoscopic foundation, Fronts, and Spatial Instabilities. (Berlin: Springer-Ferlag, 2010). https://doi.org/10.1007/978-3-642-11443-4

4. Meroz Y., Sokolov I.M., Klafter J. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist. Phys. Rev. E. 2010. 81: R010101. https://doi.org/10.1103/physreve.81.010101

5. Weigel A.V., Simon B., Tamkun M.M., Krapf D. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Nat. Acad. Sci . 2011. 108: 6438. https://doi.org/10.1073/pnas.1016325108

6. Shkilev V.P. Subdiffusion of mixed origin with chemical reactions. J. Exp. Theor. Phys. 2013. 117(6): 1066. https://doi.org/10.1134/S1063776113140045

7. Schirmacher W. Microscopic theory of dispersive transport in disordered semiconductors. Solid State Commun. 1981. 39: 893. https://doi.org/10.1016/0038-1098(81)90032-6

8. Movaghar B., Grunewald M., Pohlmann B., Wurtz D., Schirmacher W. Theory of hopping and multiple-trapping in disordered systems. J. Stat. Phys. 1983. 30: 315. https://doi.org/10.1007/BF01012306

9. Godzik K., Schirmacher W. Theory of dispersive transport in amorphous semiconductors. J. de Phys. (Paris). 1981. 42: 127. https://doi.org/10.1051/jphyscol:1981424

10. Barkai E., Cheng Y. Aging continuous time random walks. J. Chem. Phys. 2003. 118: 6167. https://doi.org/10.1063/1.1559676

11. Sokolov I.M. Thermodynamics and fractional Fokker-Planck equations. Phys. Rev. E. 2001. 63: R056111.https://doi.org/10.1103/physreve.63.056111

12. Sokolov I.M. Solutions of a class of non-Markovian Fokker-Planck equations. Phys. Rev. E. 2002. 66: R041101. https://doi.org/10.1103/physreve.66.041101

13. Neusius T., Sokolov I.M., Smith J.C. Subdiffusion in time-averaged, confined random walks. Phys. Rev. E. 2009. 80: R011109. https://doi.org/10.1103/physreve.80.011109

14. Miyaguchi T., Akimoto T. Ergodic properties of continuous-time random walks: Finite-size effects and ensemble dependences. Phys. Rev. E. 2013. 87: R032130. https://doi.org/10.1103/physreve.87.032130 

15. Bateman H., Erdelyi A. Tables of Integral Transforms. (NY: Mc Graw-Hill, 1954).Feller W. An

16. Introduction to Probability Theory and its Application. (NY: J. Wiley and Song. Inc., 1957).




DOI: https://doi.org/10.15407/hftp07.02.175

Copyright (©) 2016 V. P. Shkilev, V. V. Lobanov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.