Хімія, фізика та технологія поверхні, 2017, 8 (2), 175-193.

Модифікування та каталітичні властивості пентаоксиду ніобію



DOI: https://doi.org/10.15407/hftp08.02.175

V. V. Sydorchuk, S. V. Khalameida, J. Skubiszewska-Zięba, L. O. Davydenko, V. O. Zazhigalov

Анотація


Здійснено механохімічну, мікрохвильову та ультразвукову обробку пентаоксиду ніобію різного походження (порошки та ксерогелі) та з різною величиною питомої поверхні – в інтервалі 0.1–474 м2/г. Встановлено можливість регулювання питомої поверхні, поруватої та кристалічної структури, електронних властивостей Nb2O5. Вивчено вплив фізико-хімічних характеристик на фотокаталітичну активність. Показано, що найвищу активність в процесі фотодеградації родаміну Б під дією видимого світла мають високодисперсні порошки з максимальною питомою поверхнею. Всі зразки Nb2O5виявляють активність при соно- та механодеградації сафраніну Т.

Ключові слова


пентаоксид ніобію; дисперсність; механохімічна; мікрохвильова та ультразвукова обробки; порувата та кристалічна структура; фотодеградація; соно- та механокаталітична активність

Повний текст:

PDF

Посилання


1. Borowski M. Perovskites: Structure, Properties and Uses. (Nova Science Publishers, 2010).

2. Volk T., Wohlecke M. Lithium niobate. Defects, Photorefraction and Photoelectric Switching. (Berlin-Heidelberg: Springer. 2008).

3. Sydorchuk V., Khalameida S., Zazhigalov V. Study of interaction in the system lithium compound – niobium oxide under mechanochemical treatment. Him. Fiz. Tehnol. Poverhni. 2012. 3(1):53. [in Ukrainian].

4. Khalameida S., Sydorchuk V., Leboda R., Skubiszewska-Zięba J., Zazhigalov V. Prepared of nanodispersed lithium niobate by mechanochemical route. J. Therm. Anal. Calorim. 2014. 115(1):579.  https://doi.org/10.1007/s10973-013-3343-5

5. Aegerter A.M. Sol–gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol. Energy Mater. Sol. Cells. 2001. 68(3–4): 401. https://doi.org/10.1016/S0927-0248(00)00372-X

6. Tanabe K. Catalytic application of niobium compounds. Catal. Today. 2003. 78(1–4): 65. https://doi.org/10.1016/S0920-5861(02)00343-7

7. Wieczorek-Ciurowa K., Gamrat K. Mechanochemical synthesis as an example of green processes. J. Therm. Anal. Calor. 2007. 88(1): 213.  https://doi.org/10.1007/s10973-006-8098-9

8. Cintas P., Luche J. L. Green Chemistry. The sonochemical approach. Green Chemistry. 1999. 1(3):115.  https://doi.org/10.1039/a900593e

9. Byrappa K., Adschiri T. Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 2007. 53(2):117.  https://doi.org/10.1016/j.pcrysgrow.2007.04.001

10. Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 2004. 11(2): 47.  https://doi.org/10.1016/j.ultsonch.2004.01.037

11. Boldyrev V.V. Mechanochemistry and sonochemistry. Ultrason. Sonochem. 1995. 2(2):143.  https://doi.org/10.1016/1350-4177(95)00019-3

12. Varma R.S. "Greener" chemical synthesis using mechanochemical mixing or microwave and ultrasound irradiation. Green Chem. Lett. Rev. 2007. 1(1): 20.  https://doi.org/10.1080/17518250701756991

13. Leboda R., Charmas B., Sidorchuk V.V. Physicochemical and technological aspects of hydrothermal modification of complex sorbents and catalysts. Part I. Modification of porous and crystalline structures. Adsorp. Sci. Technol. 1997. 15(3):189.  https://doi.org/10.1177/026361749701500305

14. Phenelonov V.B. Introduction to the physical chemistry of forming supramolecular structures of adsorbents and catalysts. (Novosibirsk: SO RAN, 2004). [in Russian].

15. Parsons S. Advanced oxidative processes for water and wastewater treatment. (IWA Publishing, UK, 2004).

16. Bruckman A., Krebs A., Bolm C. Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem. 2008. 10(11): 1131.  https://doi.org/10.1039/b812536h

17. Cotto M.C., Emiliano A., Nieto S., Duconge J., Roque-Malherbe R. Degradation of phenol by mechanical activation of a rutile catalyst. J. Colloid Interface Sci. 2009. 339(1): 133.  https://doi.org/10.1016/j.jcis.2009.07.016

18. Wu T.-N. Environmental perspectives of microwave applications as remedial alternatives: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. 2008. 12(12): 102.  https://doi.org/10.1061/(ASCE)1090-025X(2008)12:2(102)

19. Bayot D.A., Devillers M.M. Precursors routes for the preparation of Nb based multimetallic oxides. Progress in Solid State Chemistry Research, Buckley R.W. (Ed.) (New York: Nova Science Publishers, 2007.).

20. Gupta V.K, Jain R., Mittal A., Mathur M. Sikarwar S. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci. 2007. 309(2): 464.  https://doi.org/10.1016/j.jcis.2006.12.010

21. Heinike G. Tribochemistry. (Moscow: Mir, 1977). [in Russian].

22. Suslick K.S., Hyoen T., Fang M., Cichowlas A. Sonochemical synthesis of nanostructured catalysts. Mater. Sci. Eng. 1995. 204(1–2): 186.  https://doi.org/10.1016/0921-5093(95)09958-1

23. Kim S.-Y., Chang T.-S., Shin C.-H. Enhancing effects of ultrasound treatment on the preparation of TiO2 photocatalysts. Catal. Lett. 2007. 118(3): 224.  https://doi.org/10.1007/s10562-007-9174-x

24. Marković S., Mitrić M., Starčević G., Uskoković D. Ultrasonicde-agglomeration of barium titanate powder. Ultrason. Sonochem. 2008. 15(1): 16.  https://doi.org/10.1016/j.ultsonch.2007.07.008

25. Franco F., Pérez-Maqueda L.A., Pérez-Rodríguez J.L. The effect of ultrasound on the particle size and structural disorderof a well-ordered kaolinite. J.Colloid Interface Sci. 2004. 274(1): 107.  https://doi.org/10.1016/j.jcis.2003.12.003

26. Dolci F., Di Chio M., Baricco M., Giamello E. Niobium pentoxide as promoter in the mix)ed MgH2/Nb2O5 system for hydrogen storage: a multitechnique investigation of the H2 uptake. J. Mater. Sci. 2007. 42(17): 7180.  https://doi.org/10.1007/s10853-007-1567-0

27. Lemercier T., Quarton M., Fontaine M.F., Hague C.F. Structural and chemical transformations induced by laser impact on TiO2 and Nb2O5. J. Phys. Chem. Solids. 1997. 58(4): 679.  https://doi.org/10.1016/S0022-3697(96)00196-5

28. Sydorchuk V., Khalameida S., Zazhigalov V., Skubiszewska-Zieba J., Leboda R., Wieczorek-Ciurowa K. Influence of mechanochemical activation in various media on structure of porous and non-porous silicas. Appl. Surf. Sci. 2010. 257(2): 446.  https://doi.org/10.1016/j.apsusc.2010.07.009

29. Zhao Y., Zhou X., Ye L., Tsang S. C. E. Nanostructured Nb2O5 catalysts. Nano Reviews. 2012. 3: 17631.  https://doi.org/10.3402/nano.v3i0.17631

30. Li G., Wang X., Ma X. Tetra nal VNb9O24.9-based nanorods: a novel form of lithium battery anode with superior cyclability. J. Mater. Chem. A. 2013. 1: 12409.  https://doi.org/10.1039/c3ta12471a

31. Pan L., Wang Y., Wang X.J., Qu H., Zhao J., Li Y., Gavrilyuk A. Hydrogen photochromism in Nb2O5 powders. Phys. Chem. Chem. Phys. 2014. 16(38): 20828.  https://doi.org/10.1039/C4CP02834A

32. Chen F., Zhao J., Hidaka H. Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int. J. Photoenergy. 2003. 5(4): 209.  https://doi.org/10.1155/S1110662X03000345

33. Fu H., Zhang S., Xu T., Zhu Y., Chen J. Ptotocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol. 2008. 42(6): 2085.  https://doi.org/10.1021/es702495w

34. Kryukov A., Stroyuk A., Kuchmiy S., Pokhodenko V. Nanophotocatalysis. (Kyiv: Nanoperiodika, 2013). [in Russian].

35. Wu T., Liu G., Zhao J., Hidaka H., Serpone N. Photoassisted Degradation of Dye Pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B. 1998. 102(30): 5845.  https://doi.org/10.1021/jp980922c

36. Fan Y., Chen G., Li D., Luo Y., Lock N., Jensen A.P., Mamakhel A., Mi J., Iversen S.B., Meng Q., Iversen B.B. Higly selective deethylation of rhodamine B on TiO2 prepared in supercritical fluids. Int. J. Photoenergy. 2012. 2012: 173865.

37. Sydorchuk V., Khalameida S., Davydenko L., Zakutevsky O. Physical-chemical and photocatalytic studies of equimolar composition ZnO-SnO2 modified via hydrothermal and thermal treatment. Him. Fiz. Tehnol. Poverhni. 2017. 8(2): 120. [in Ukrainian].  https://doi.org/10.15407/hftp08.02.120

38. Sydorchuk V., Khalameida S., Skubiszewska-Zięba J., Leboda R., Zazhigalov V. Mechanochemical degradation of safranin T catalyzed by oxides. Russ. J. Appl. Chem. 2012. 85(2): 187.  https://doi.org/10.1134/S107042721202005X

39. Sydorchuk V., Khalameida S., Skubiszewska-Zięba J., Leboda R., Zazhigalov V., Davydenko L. Photo- and mechanocatalytic degradation of safranin T in the presence of dispersed lithium niobate. Him. Fiz. Tehnol. Poverhni. 2012. 3(3): 265. [in Ukrainian].

40. Khalameida S., Sydorchuk V., Zazhigalov V., Skubiszewska-Zięba J., Leboda R. Mechanochemical, microwave and ultrasonic degradation of safranine in the presence of different titanium dioxide kinds. Him. Fiz. Tehnol. Poverhni. 2011. 2(3): 235. [in Ukrainian].




DOI: https://doi.org/10.15407/hftp08.02.175

Copyright (©) 2017 V. V. Sydorchuk, S. V. Khalameida, J. Skubiszewska-Zięba, L. O. Davydenko, V. O. Zazhigalov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.