Хімія, фізика та технологія поверхні, 2017, 8 (3), 333-345.

Сушка краплин водних суспензій багатошарових вуглецевих нанотрубок в присутності катіонної поверхнево-активної речовини ЦТАБ



DOI: https://doi.org/10.15407/hftp08.03.333

V. A. Gigiberiya, L. A. Bulavin, O. S. Lytvyn, M. I. Lebovka

Анотація


Досліджено вплив цетилтриметиламоній броміду (ЦТАБ) на сушку краплин водних суспензій багатошарових вуглецевих нанотрубок (НТ) з їх концентрацією в інтервалі Сn=0.005–0.1 %. В залежності від концентрації НТ і ЦТАБ, в процесі сушки спостерігалося утворення структур різних морфологічних типів. Для різних концентрацій НТ спостерігалися подібні кореляції в поведінці загальної непрозорості структур сушки і товщини «кавового кільця». Дані мікроскопічних досліджень, отримані за допомогою атомного силового мікроскопа, свідчать про можливість формування в зоні «кавового кільця» досить товстих джгутів, які об’єднують окремі нанотрубки.

Ключові слова


сушка; водні суспензії; нанотрубки; ЦТАБ

Повний текст:

PDF

Посилання


1. Zeng H., Kristiansen K., Wang P., Bergli J., Israelachvili J. Surface-Induced Patterns from Evaporating Droplets of Aqueous Carbon Nanotube Dispersions. Langmuir. 2011. 27(11): 7163. https://doi.org/10.1021/la200476n

2. Kuzmenko A.P., Thet P.N., Myo M.T., Chan N.A., Dobromysilov M.B. Self-assembly and Self-organization Processes of Carbon Nanotubes in the Colloidal Systems. J. Nano-Electron Phys. 2015. 7(4): 4011.

3. Zhong X, Crivoi A, Duan F. Sessile nanofluid droplet drying. Adv. Colloid Interface Sci. 2015. 217: 13. https://doi.org/10.1016/j.cis.2014.12.003

4. Yildirim Erbil H. Control of stain geometry by drop evaporation of surfactant containing dispersions. Adv. Colloid Interface Sci. 2014. 222: 275. https://doi.org/10.1016/j.cis.2014.08.004

5. Dugyala V.R, Basavaraj M.G. Evaporation of Sessile Drops Containing Colloidal Rods: Coffee-Ring and Order-Disorder Transition. J. Phys. Chem. B. 2015. 119(9): 3860. https://doi.org/10.1021/jp511611v

6. Lebovka N.I., Vygornitskii N.V., Gigiberiya V.A., Tarasevich Y.Y. Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods. Phys. Rev. E. 2016. 94(6): 62803. https://doi.org/10.1103/PhysRevE.94.062803

7. Lebovka N.I., Tarasevich Y.I., Gigiberiya V.A., Vygornitskii N.V. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice. Phys. Rev. E. 2017. 95(5): 52130. https://doi.org/10.1103/PhysRevE.95.052130

8. Bandodkar A.J., Jeerapan I., You J.-M., Nu-ez-Flores R., Wang J. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability. Nano Lett. 2015. 16(1): 721. https://doi.org/10.1021/acs.nanolett.5b04549

9. Tai Y.-L., Yang Z.-G. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT: PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir. 2015. 31(48): 13257. https://doi.org/10.1021/acs.langmuir.5b03449

10. Omidi M., Haghiralsadat F., Oroojalian F., Azhdari M. Fabrication of paper-based load sensor by using the multi-walled carbon nanotubes ink. In: 10th IEEE International Conference on Networking, Sensing and Control (Apr. 10, 2013, Evry, France). P. 221. https://doi.org/10.1109/ICNSC.2013.6548740

11. Vaisman L., Wagner H.D., Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006. 128–130: 37. https://doi.org/10.1016/j.cis.2006.11.007

12. Shin J.-Y., Premkumar T., Geckeler K.E. Dispersion of Single-Walled Carbon Nanotubes by Using Surfactants: Are the Type and Concentration Important? Chem. Eur. J. 2008. 14(20): 6044. https://doi.org/10.1002/chem.200800357

13. Zhang S., Lan Q., Liu Q., Xu J., Sun D. Aqueous foams stabilized by Laponite and CTAB. Colloids Surf. A. 2008. 317: 406. https://doi.org/10.1016/j.colsurfa.2007.11.010 

14. Devre R.D., Budhlall B.M., Barry C.F. Enhancing the Colloidal Stability and Electrical Conductivity of Single-Walled Carbon Nanotubes Dispersed in Water. Macromol. Chem. Phys. 2016. 217(5): 683. https://doi.org/10.1002/macp.201500408

15. Xiao Q., Wang P.-H., Ji L.-L. Dispersion of carbon nanotubes in aqueous solution with cationic surfactant CTAB. J. Inorg. Mater. 2007. 22(6): 1122.

16. de la Cruz E.F., Zheng Y., Torres E., Li W., Song W., Burugapalli K. Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int. J. Electrochem. Sci. 2012. 7: 3577.

17. Manilo M.V., Lebovka N., Barany S. Combined effect of cetyltrimethylammonium bromide and laponite platelets on colloidal stability of carbon nanotubes in aqueous suspensions. J. Mol. Liq. 2017. 235: 104. https://doi.org/10.1016/j.molliq.2017.01.090

18. Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A. Contact line deposits in an evaporating drop. Phys. Rev. E. 2000. 62(1): 756. https://doi.org/10.1103/PhysRevE.62.756

19. Deegan R. Pattern formation in drying drops. Phys Rev E. 2000. 61(1): 475. https://doi.org/10.1103/PhysRevE.61.475

20. Deegan R.D, Bakajin O, Dupont T.F, Huber G, Nagel S.R, Witten T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997. 389(6653): 827. https://doi.org/10.1038/39827

21. Erbil H.Y. Evaporation of pure liquid sessile and spherical suspended drops: A review. Adv. Colloid Interface Sci. 2012. 170(1–2): 67. https://doi.org/10.1016/j.cis.2011.12.006

22. Kim J.-H., Park S.-B., Kim J.H., Zin W.-C. Polymer Transports Inside Evaporating Water Droplets at Various Substrate Temperatures. J. Phys. Chem. C. 2011. 115(11): 15375. https://doi.org/10.1021/jp202429p

23. Erbil H.Y., Mc Hale G., Newton M.I. Drop evaporation on solid surfaces: Constant contact angle mode. Langmuir. 2002. 18(7): 2636. https://doi.org/10.1021/la011470p

24. Fujikawa S., Yano T., Watanabe M. Vapor-liquid interfaces, bubbles and droplets: fundamentals and applications. ( Berlin Heidelberg: Springer-Verlag, 2011). https://doi.org/10.1007/978-3-642-18038-5

25. Bardakov R.N., Chashechkin Y.D., Shabalin V.V. Hydrodynamics of a drying multicomponent liquid droplet. Fluid Dynamics. 2010. 45(5): 803. https://doi.org/10.1134/S0015462810050133

26. Yunker P.J., Still T., Lohr M.A., Yodh A.G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature. 2011. 476(7360): 308. https://doi.org/10.1038/nature10344

27. Crivoi A., Duan F. Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets. Phys. Rev. E. 2013. 87(4): 42303. https://doi.org/10.1103/PhysRevE.87.042303

28. Crivoi A., Duan F. Effect of Surfactant on the Drying Patterns of Graphite Nanofluid Droplets. J. Phys. Chem. B. 2013. 117(19): 1. https://doi.org/10.1021/jp401751z

29. Zhong X., Duan F. Surfactant-Adsorption-Induced Initial Depinning Behavior in Evaporating Water and Nanofluid Sessile Droplets. Langmuir. 2015. 31(19): 5291. https://doi.org/10.1021/acs.langmuir.5b00288

30. Soboleva O.A, Summ B.D. The kinetics of dewetting of hydrophobic surfaces during the evaporation of surfactant solution drops. Colloid J. 2003. 65(1): 89–93. https://doi.org/10.1023/A:1022379210765

31. Monteux C., Lequeux F. Packing and sorting colloids at the contact line of a drying drop. Langmuir. 2011. 27(6): 2917. https://doi.org/10.1021/la104055j

32. Velikov K.P., Christova C.G., Dullens R.P.A., van Blaaderen A. Layer-by-Layer Growth of Binary Colloidal Crystals. Science. 2002. 296(5565): 106. https://doi.org/10.1126/science.1067141

33. Park J., Moon J. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir. 2006. 22(8): 3506. https://doi.org/10.1021/la053450j

34. Zhang S., Li Q., Kinloch I.A., Windle A.H. Ordering in a droplet of an aqueous suspension of single-wall carbon nanotubes on a solid substrate. Langmuir. 2010. 26(3): 2107. https://doi.org/10.1021/la902642f

35. Huang L., Cui X., Dukovic G., O Brien S.P. Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions. Nanotechnology. 2004. 15(11): 1450. https://doi.org/10.1088/0957-4484/15/11/012

36. Li Q., Zhu Y.T., Kinloch I.A., Windle A.H. Self-organization of carbon nanotubes in evaporating droplets. J. Phys. Chem. B. 2006. 110(28): 13926. https://doi.org/10.1021/jp061554c

37. Beyer S.T., Walus K. Controlled orientation and alignment in films of single-walled carbon nanotubes using inkjet printing. Langmuir. 2012. 28(23): 8753. https://doi.org/10.1021/la300770b

38. Yanchenko A.V, Melezhyk Y.I., Sementsov V.V. Synthesis off ine carbon nanotubes codeposited at metal licoxide catalysts. Russ. J. Appl. Chem. 2005. 78(6): 924.

39. Tyrode E., Rutland M.W., Bain C.D. Adsorption of CTAB on hydrophilic silica studied by linear and nonlinear optical spectroscopy. J. Am. Chem. Soc. 2008. 130(51): 17434. https://doi.org/10.1021/ja805169z

40. Janzen J., Kraus G. Specific surface area measurements on carbon black. Rubber. Chem. Technol. 1971. 44(5): 1287. https://doi.org/10.5254/1.3544809

41. Goncharuk A.I., Lebovka N.I., Lisetski L.N., Minenko S.S. Aggregation, percolation and phase transitions in nematic liquid crystal EBBA doped with carbon nanotubes. J. Phys. D. 2009. 42(16): 165411. https://doi.org/10.1088/0022-3727/42/16/165411

42. Hilding J., Grulke E.A., Zhang Z.G., Lockwood F. Dispersion of Carbon Nanotubes in Liquids. J. Dispersion. Sci. Technol. 2007. 24(1): 1. https://doi.org/10.1081/DIS-120017941

43. Hennrich F., Krupke R., Arnold K., Stütz J.A.R., Lebedkin S., Koch T., Schimmel T., Kappes M.M. The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J. Phys. Chem. 2007. 111(8): 1932. https://doi.org/10.1021/jp065262n

44. Strano M.S., Moore V.C., Miller M.K., Allen M.J., Haroz E.H., Kittrell C., Hauge R.H., Smalley R.E.The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2015. 3(1–2): 81.

45. Rastogi R., Kaushal R., Tripathi S.K., Sharma A.L., Kaur I., Bharadwaj LM. Comparative study of carbon nanotube dispersion using surfactants. J. Colloid Interface Sci. 2008. 328(2): 421. https://doi.org/10.1016/j.jcis.2008.09.015




DOI: https://doi.org/10.15407/hftp08.03.333

Copyright (©) 2017 V. A. Gigiberiya, L. A. Bulavin, O. S. Lytvyn, M. I. Lebovka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.