Хімія, фізика та технологія поверхні, 2018, 9 (1), 26-39.

Наночастинки гідрофосфату цирконію, армовані слабкокислотним катіонообмінним полімером



DOI: https://doi.org/10.15407/hftp09.01.026

L. N. Ponomaryova, Yu. S. Dzyazko, Yu. M. Volfkovich, V. E. Sosenkin

Анотація


Слабкокислотну катіонообмінну смолу модифіковано наночастинками гідрофосфату цирконію. Матеріали досліджено методами еталонної контактної порометрії та трансмісійної електронної мікроскопії. У фазі полімера знайдено як неагреговані наночастинки (5–15 нм), так і агрегати (від 250 нм до декількох мікрон). Наночастинки у кластерах та каналах полімера пригнічують дисоціацію карбоксильних груп, що зумовлено протиіонами (H+) подвійного електричного шару навколо частинок. Це призводить до трансформації пористої структури полімера – внесок мікропор до загальної пористості зростає. Сформовані додаткові селективні центри обумовлюють більш сильну взаємодію з поверхнею молекул діамантового зеленого у порівнянні з немодифікованим полімером. Досліджено вилучення іонів Ni(II) з води, яка містить іони жорсткості, композит демонструє у два рази більшу ємність до проскока, ніж полімер. Модифікатор також полегшує регенерацію слабкокислотного іоніту.


Ключові слова


фосфат цирконію; органо-неорганічний сорбент; катіонний барвник; нікель; наночастинки; еталонна контактна порометрія; іонний обмін; адсорбція барвника

Повний текст:

PDF (English)

Посилання


1. Naushad M. Inorganic and composite ion exchange materials and their applications (Review). Ion Exch. Lett. 2009. 2(1): 1.

2. Sanchez C., Julián B., Belleville P., Popall M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005. 15(35–36): 3559. https://doi.org/10.1039/b509097k

3. Liu J., Ma Y., Xu T., Shao G. Preparation of zwitterionic hybrid polymer and its application for the removal of heavy metal ions from water. J. Hazard. Mater. 2010. 178(1–3): 1021. https://doi.org/10.1016/j.jhazmat.2010.02.041

4. An B., Kim H., Park Ch., Lee S.-H., Cho J.-W. Preparation and characterization of an organic/inorganic hybrid sorbent (PLE) to enhance selectivity for As(V). J. Hazard. Mater. 2015. 289: 54. https://doi.org/10.1016/j.jhazmat.2015.02.029

5. Awual Md.R., Miyazaki Yu., Taguchi T., Shiwaku H., Yaita T. Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent di-o-benzo-p-xylyl-28-crown-8-ether silica. Chem. Eng. J. 2016. 291: 128. https://doi.org/10.1016/j.cej.2016.01.109

6. Awual Md.R., Hasanb Md.M., Shahat A. Functionalized novel mesoporous adsorbent for selective lead(II) ions monitoring and removal from wastewater. Sens. Actuators B. 2014. 203: 854. https://doi.org/10.1016/j.snb.2014.07.063

7. Shvets O., Belyakova L. Synthesis, characterization and sorption properties of silica modified with some derivatives of β-cyclodextrin. J. Hazard. Mater. 2015. 283: 643. https://doi.org/10.1016/j.jhazmat.2014.10.012

8. Veliscek-Carolan J., Hanley T.L., Luca V. Zirconium organophosphonates as high capacity, selective lanthanide sorbents. Sep. Purif. Technol. 2014. 129: 150. https://doi.org/10.1016/j.seppur.2014.03.028

9. Liang X., Xu Y., Tan X., Wang L., Sun Y., Lin D., Sun Y., Qin X., Wang Q. Heavy metal adsorbents mercapto and amino functionalized palygorskite: Preparation and characterization. Colloids Surf. A. 2013. 426: 98. https://doi.org/10.1016/j.colsurfa.2013.03.014

10. Starukh G.M. Zn-Al layered double hydroxides for adsorption and photocatalytic removal of cationic dye. Him. Fiz. Tehnol. Poverhni. 2016. 7(4): 379. https://doi.org/10.15407/hftp07.04.379

11. Liu C., Wu P., Zhu Y., Tran L. Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere. 2016. 144: 1026. https://doi.org/10.1016/j.chemosphere.2015.09.063

12. Ma L., Chen Q., Zhu J., Xi Y., He H., Zhu R., Tao Q., Ayoko G.A. Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chem. Eng. J. 2016. 283: 880. https://doi.org/10.1016/j.cej.2015.08.009

13. Muir B., Matusik J., Bajda T. New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features. Appl. Surf. Sci. 2016. 361: 242. https://doi.org/10.1016/j.apsusc.2015.11.116

14. Perlova N., Dzyazko Y., Perlova O., Palchik A., Sazonova V. Formation of Zirconium Hydrophosphate Nanoparticles and Their Effect on Sorption of Uranyl Cations. Nanoscale Res. Lett. 2017. 12: 209. https://doi.org/10.1186/s11671-017-1987-y

15. Dzyazko Yu.S., Perlova O.V., Perlova N.A., Volfkovich Yu.M., Sosenkin V.E., Trachevskii V.V., Sazonova V.F., Palchik A.V. Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations. Desalin. Water Treat. 2017. 69: 142.

16. Dzyazko Yu.S., Volfkovich Y.M., Ponomaryova L.N., Sosenkin V.E., Trachevskii V.V., Belyakov V.N. Composite ion-exchangers based on flexible resin containing zirconium hydrophosphate for electromembrane separation. J. Nanosci. Technol. 2016. 2(1): 43.

17. Dzyazko Yu., Ponomarova L., Volfkovich Yu., Tsirina V., Sosenkin V., Nikolska N., Belyakov V. Influence of zirconium hydrophosphate nanoparticles on porous structure and sorption capacity of the composites based on ion exchange resin. Chemistry and Chemical Technology. 2016. 10(3): 329. https://doi.org/10.23939/chcht10.03.329

18. Dzyazko Yu.S., Ponomaryova L.N., Volfkovich Yu.M., Sosenkin V.E., Belyakov V.N. Polymer Ion-Exchangers Modified with Zirconium Hydrophosphate for Removal of Cd2+ Ions from Diluted Solutions. Separ. Sci. Technol. 2013. 48(14): 2140. https://doi.org/10.1080/01496395.2013.794434

19. Acelas N.Y., Martin B.D., López D., Jefferson B. Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere. 2015. 119: 1353. https://doi.org/10.1016/j.chemosphere.2014.02.024

20. Sharma G., Kumar A., Naushad M., Pathania D., Sillanpä M. Polyacrylamide @ Zr(IV) vanadophosphate nanocomposite: Ion exchange properties, antibacterial activity, and photocatalytic behavior. J. Ind. Eng. Chem. 2016. 33: 201. https://doi.org/10.1016/j.jiec.2015.10.011

21. El-Naggar I.M., Hebash K.A., Sheneshen E.S., Abdel-Galil E.A. Preparation, characterization and ion-exchange properties of a new organic-inorganic composite cation exchanger polyaniline silicotitanate: Its applicationsfor treatment of hazardous metal ions from waste solutions. Inorganic Chemistry: An Indian Journal. 2014. 9(1): 30.

22. Sharma G., Pathania D., Naushad Mu. Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics. 2015. 21(4): 1045. https://doi.org/10.1007/s11581-014-1269-y

23. Inamuddin, Shakeel Sh.Kh., Siddiqui W.A., Khan A.A. Synthesis, characterization and ion-exchange properties of a new and novel 'organic–inorganic' hybrid cation-exchanger: Nylon-6,6, Zr(IV) phosphate. Talanta. 2007. 71(2): 841. https://doi.org/10.1016/j.talanta.2006.05.042

24. Qi H., Wang Sh., Liu H., Gao Y., Wang T., Huang Y. Synthesis of an organic–inorganic polypyrrole/titanium(IV) biphosphate hybrid for Cr(VI) removal. J. Mol. Liq. 2016. 215: 402. https://doi.org/10.1016/j.molliq.2015.12.060

25. Ghasemi Sh., Ghorbani M., Ghazi M.M. Synthesis and characterization of organic–inorganic core–shell structure nanocomposite and application for Zn ions removal from aqueous solution in a fixed-bed column. Appl. Surf. Sci. 2015. 359: 602. https://doi.org/10.1016/j.apsusc.2015.10.143

26. Xu Y., Zhou Y., Ma W., Wang Sh., Li Sh. Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles for sensitive detection and removal of Hg2+. J. Nanopart. Res. 2013. 15: 1716. https://doi.org/10.1007/s11051-013-1716-0

27. Shuang Ch., Pan F., Zhou Q., Li A., Li P. Magnetic Polyacrylic Anion Exchange Resin: Preparation, Characterization and Adsorption Behavior of Humic Acid. Ind. Eng. Chem. Res. 2012. 51(11): 4380. https://doi.org/10.1021/ie201488g

28. Zhao Y., Li J., Zhao L., Zhang Sh., Huang Y., Wu X., Wang X. Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem. Eng. J. 2014. 235: 275. https://doi.org/10.1016/j.cej.2013.09.034

29. Kamari Y., Ghiaci M. Preparation and characterization of ibuprofen/modified chitosan/TiO2 hybrid composite as a controlled drug-delivery system. Microporous Mesoporous Mater. 2017. 234: 361. https://doi.org/10.1016/j.micromeso.2016.07.030

30. Zhang K., Cao M., Lou Ch., Wu Sh., Zhang P., Zhi M., Zhu Y. Graphene-coated polymeric anion exchangers for ion chromatography. Anal. Chim. Acta. 2017. 970: 73. https://doi.org/10.1016/j.aca.2017.03.015

31. Dzyazko Yu.S., Perlova O.V., Perlova N.A., Sazonova V.F., Ponomareva L.N., Volfkovich Yu.M., Palchik A.V., Trachevskii V.V., Belyakov V.N. Organic-inorganic ion-exchanger containing zirconium hydrophosphate for removal of uranium(VI) compounds from aqueous solutions. Him. Fiz. Tehnol. Poverhni. 2016. 7(2): 119. [in Russian]. https://doi.org/10.15407/hftp07.02.119

32. Dastgheib S.A., Knutson Ch., Yang Y., Salih H.H. Treatment of produced water from an oilfield and selected coal mines in the Illinois Basin. Int. J. Greenhouse Gas Control. 2016. 54(2): 513. https://doi.org/10.1016/j.ijggc.2016.05.002

33. Volfkovich Yu.M., Sosenkin V.E. Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. Russ. Chem. Rev. 2012. 81(10): 936. https://doi.org/10.1070/RC2012v081n10ABEH004281

34. Volfkovich Yu.M., Bagotsky V.S. Experimental methods for investigation of porous materials and powders, In: Porous materials and powders used in different fields of science and technology. (London: Springer-Verlag, 2014). https://doi.org/10.1007/978-1-4471-6377-0_1

35. Rouquerol J., Baron G., Denoyel R., Giesche H., Groen J., Klobes P., Levitz P., Neimark A. V., Rigby S., Skudas R., Sing K., Thommes M., Unger K. Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 2012. 84(1): 107.

36. Speight J.G. Handbook of Petroleum Refining. (Boca Raton: CRS Press, 2017).

37. Helfferich F. Ion Exchange. (New York: Dover, 1995).

38. Kononenko N., Nikonenko V., Grande D., Larchet C., Dammak L., Fomenko M., Volfkovich Yu. Porous structure of ion exchange membranes investigated by various techniques. Adv. Colloid Interface Sci. 2017. 246: 196. https://doi.org/10.1016/j.cis.2017.05.007

39. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. Characterization of ion-exchange membrane materials: properties vs structure. Adv. Colloid Interface Sci. 2008. 139: 3. https://doi.org/10.1016/j.cis.2008.01.002

40. Kononenko N.A., Berezina N.P., Volfkovich Yu.M., Schkolnikov E.I. Investigation of the structure of ion exchange materials by calibrated porosimetry. Journal of Applied Chemistry of the USSR. 1985. 56(10): 2029.

41. Dzyazko Yu.S., Ponomareva L.N., Volfkovich Y.M., Sosenkin V.E. Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic–organic ionites. Russ. J. Phys. Chem. A. 2012. 86(6): 913. https://doi.org/10.1134/S0036024412060088

42. Volfkovich Y.M. Influence of the electric double layer on the internal interface in an ion exchanger on its electrochemical and sorption properties. Soviet Electrochemistry. 1984. 20(5): 621.

43. PubChem - Open Chemistry Database. https://pubchem.ncbi.nlm.nih.gov/compound/90474287#section=3D-Conformer.

44. Eckenrode H.M., Jen S.H., Han J., Yeh A.G. Dai H.-L. Adsorption of a Cationic Dye Molecule on Polystyrene Microspheres in Colloids: Effect of Surface Charge and Composition Probed by Second Harmonic Generation. J. Phys. Chem. B. 2005. 109 (10): 4646. https://doi.org/10.1021/jp045610q

45. Bayramoglu G., Altintas B., Arica M.Y. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem. Eng. J. 2009. 152(2–3): 339. https://doi.org/10.1016/j.cej.2009.04.051

46. Maheria K.C., Chudasama U.V. Sorptive removal of dyes using titanium phosphate. Ind. Eng. Chem. Res. 2007. 46(21): 6852. https://doi.org/10.1021/ie061520r

47. Abramian L., El-Rassy H. Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem. Eng. J. 2009. 150(2–3): 403. https://doi.org/10.1016/j.cej.2009.01.019

48. Qiu H., LV L., Pan B.-C., Zhang Q.-J., Zhang W.-M., Zhang Q.-X. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A. 2009. 10(5):716. https://doi.org/10.1631/jzus.A0820524

49. Rouquerol F., Rouquerol J., Sing H. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. (London-San Diego: Academic Press Publishing, 1999).




DOI: https://doi.org/10.15407/hftp09.01.026

Copyright (©) 2018 L. N. Ponomaryova, Yu. S. Dzyazko, Yu. M. Volfkovich, V. E. Sosenkin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.