Кінетика піролізу ряду природних та синтетичних похідних цинамової кислоти на поверхні нанорозмірного кремнезему
DOI: https://doi.org/10.15407/hftp10.03.281
Анотація
Встановлення кореляцій структура-реакційна здатність в термостимульованих реакціях цинамових кислот на поверхні каталізаторів важливе для розробки методів піролітичної конверсії компонент лігноцелюлозної біомаси в продукти з високою доданою вартістю, зокрема, в стирени.
Тому в цій роботі досліджено кінетику піролізу реакційної серії пара-заміщених похідних транс-цинамової кислоти (-Н, -СН3, -С(СН3)3, -ОСН3, -F) на поверхні нанорозмірного кремнезему методом термопрограмованої десорбційної мас-спектрометрії (ТПД МС). Ідентифіковано продукти піролітичних реакцій на поверхні - відповідні, заміщені в пара-положенні, вінілбензени, фенілацетилени та фенілкетени. Розраховано кінетичні параметри реакцій декарбоксилювання, кетенізації та декарбонілювання. Одержано кореляції структура-реакційна здатність між кінетичними параметрами (енергією активації) та термодинамічними параметрами (константи замісників Гамметта), які свідчать, що електронодонорні замісники зменшують енергію активації цих трьох реакцій, а електроноакцепторні – підвищують її. Тобто, в перехідному стані швидкість-лімітуючої стадії на реакційному центрі спостерігається зменшення електронної густини. Розраховані величини реакційних констант ρ показали, що досліджені реакції за чутливістю до впливу замісників розміщуються в ряд: декарбонілювання>декарбоксилювання>кетенізація. Реакція утворення фенілацетиленів виявилася найбільш чутливою до структурних змін в молекулі і перебігає через найбільш полярний перехідний стан.
Ключові слова
Посилання
1. Ralph J. Hydroxycinnamates in lignification. Phytochem. Rev. 2010. 9(1): 65. https://doi.org/10.1007/s11101-009-9141-9
2. Menshchikova E.B., Lankin V.Z., Kandalintseva N.V. Phenolic antioxidants in biology and medicine. (Saarbrücken: LAP LAMBERT Academic Publishing, 2012).
3. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010. 2(12): 1231. https://doi.org/10.3390/nu2121231
4. Simon V., Thuret A. Candy L., Bassil S., Duthen S., Raynaud C., Masseron A. Recovery of hydroxycinnamic acids from renewable resources by adsorption on zeolites. Chem. Eng. J. 2015. 280(15): 748. https://doi.org/10.1016/j.cej.2015.06.009
5. Pazo V., Kulik T., Nastasiienko N., Palianytsia B., Aspromonte S., Alonso E. Interaction of bio-derived ferulic acid from wheat bran with zeolites seen by TPD MS and FT-IR spectroscopy. In: Chemistry, Physics and Technology of Surface. (Proc. Int. Conf.). & Metal-Based Biocompatible Nanoparticles: Synthesis and Applications. Proc. Workshop. (15-17 May, 2019, Kyiv, Ukraine). P.140.
6. Gollakota A.R.K., Kishore N., Gu S. A review on hydrothermal liquefaction of biomass. Renewable Sustainable Energy Rev. 2018. 81(1): 1378. https://doi.org/10.1016/j.rser.2017.05.178
7. Ferracane R., Pellegrini N., Visconti A., Graziani G., Chiavaro E., Miglio C., Fogliano V. Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2008. 56(18): 8601. https://doi.org/10.1021/jf800408w
8. Zakzeski J., Bruijnincx P.C.A., Jongerius A.L., Weckhuysen B.M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010. 110(6): 3552. https://doi.org/10.1021/cr900354u
9. Isikgor F.H., Becer C.R. Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym. Chem. 2015. 6(25): 4497. https://doi.org/10.1039/C5PY00263J
10. Mathers R.T. How well can renewable resources mimic commodity monomers and polymers. Polym. Chem. 2012. 50(1): 1. https://doi.org/10.1002/pola.24939
11. Mandal S., Bandyopadhyay R., Das A.K. Thermo-catalytic process for conversion of lignocellulosic biomass to fuels and chemicals: a review. Int. J. Petrochem. Sci. Eng. 2018. 3(2): 58. https://doi.org/10.15406/ipcse.2018.03.00077
12. Kulik T.V., Lipkovska N.O., Barvinchenko V.M., Palyanytsya B.B., Kazakova O.A., Dudik O.O., Menyhárd A., László K. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-spectroscopy, thermogtavimetric analisis, temperature programmed desorption mass spectrometry and quantum chemical methods. J. Colloid. Interface Sci. 2016. 470: 132. https://doi.org/10.1016/j.jcis.2016.02.039
13. Kulik T.V., Palyanytsya B.B., Barvinchenko V.M., Lipkovska N.A., Dudik O.O. Thermal transformations of biologically active derivatives of cinnamic acid by TPD MS investigation. J. Anal. Appl. Pyrolysis. 2011. 90(2): 219. https://doi.org/10.1016/j.jaap.2010.12.012
14. Kulik T.V., Lipkovska N.A., Barvinchenko V.N., Palyanytsya B.B., Kazakova O.A., Dovbiy O.A., Pogorelyi V.K. Interactions between bioactive ferulic acid and fumed silica by UV-vis spectroscopy, FT-IR, TPD MS investigation and quantum chemical methods. J. Colloid Interface Sci. 2009. 339(1): 60. https://doi.org/10.1016/j.jcis.2009.07.055
15. Kulik T.V., Barvinchenko V.N., Palyanitsa B.B., Smirnova O.V., Pogorelyi V.K., Chuiko A.A. A desorption mass spectrometry study of the interaction of cinnamic acid with a silica surface. Russ. J. Phys. Chem. 2007. 81(1): 83. https://doi.org/10.1134/S0036024407010165
16. Kulik T.V., Barvinchenko V.M., Palyanitsa B.B. Adsorption and chemical transformation of cinnamic acid on the surface of highly dispersed silica. Reports of the National Academy of Sciences of Ukraine. 2006. 6: 138. [in Ukranian].
17. Stepanenko B.N. Organic chemistry. 6th ed. (Moscow: Medicine, 1980). [in Russian].
18. Shorygina N.V. Styrene, its polymers and copolymers. (Moscow - Leningrad: Goskhimizdat, 1960). [in Russian].
19. New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions Archived 21 April 2013 at the Wayback Machine, U.S. Department of Energy. https://www1.eere.energy.gov/office_eere/pdfs/exelus_case_study.pdf
20. Harmsen P., Hackmann M. Green building blocks for biobased plastics. Biobased processes and market development. (Wageningen: Propress, 2013).
21. Cheng Y.T., Huber G.W. Chemistry of furan conversion into aromatics and olefins over HZSM-5: A model biomass conversion reaction. ACS Catal. 2011.6: 611. https://doi.org/10.1021/cs200103j
22. Matlack A. Introduction to Green Chemistry. 2nd edn. (Boca Raton-London-New York: CRC Press, 2011).
23. McKenna R., Nielsen D.R. Styrene biosynthesis from glucose by engineered E. coli. Metab Eng. 2011. 13(5): 544. https://doi.org/10.1016/j.ymben.2011.06.005
24. Singha A., Rana R.K. Preparation and properties of Agave fiber-reinforced polystyrene composites. J. Thermoplast. Compos. Mater. 2013. 26: 513. https://doi.org/10.1177/0892705711425848
25. Semenov P.V. Industrial technologies for styrene production. Young scientist. 2016. 5: 168. [in Russian].
26. Timofeev V.S, Serafimov L.A. Principles of technology of basic organic and petrochemical synthesis. Train. Allowance for universities. (Moscow: Vysshaya Shkola, 2003). [in Russian].
27. Abramov A.G. The formation of 2-phenylethanol in the process of joint production of styrene and propylene oxide. Bulletin of Kazan Technological University. 2008. 3: 50. [in Russian].
28. Sykes P. A Guidebook to Mechanism in Organic Chemistry. 6th Ed. (New York: Pearson, 1986).
29. Kulik T.V. Use of TPD-MS and linear free energy relationships for assessing the reactivity of aliphatic carboxylic acids on a silica surface. J. Phys. Chem. C. 2012. 116(1): 570. https://doi.org/10.1021/jp204266c
30. Kulyk K., Palianytsia B., Alexander J.D., Azizova L., Borysenko M., Kartel M., Larsson M., Kulik T. Kinetics of valeric acid ketonization and ketenization in catalytic pyrolysis on nanosized SiO2, γ-Al2O3, CeO2/SiO2, Al2O3/SiO2 and TiO2/SiO2. Chem. Phys. Chem. 2017. 18(14): 1943. https://doi.org/10.1002/cphc.201601370
31. Nicholl S.I., Talley J.W. Development of thermal programmed desorption mass spectrometry methods for environmental applications. Chemosphere. 2006. 63(1): 132. https://doi.org/10.1016/j.chemosphere.2005.07.015
32. Rudziński W., Borowiecki T., Dominko A., Pańczyk T. A New Quantitative interpretation of temperature-programmed desorption spectra from heterogeneous solid Surfaces, based on statistical rate theory of interfacial transport: the effects of simultaneous readsorption. Langmuir. 1999. 15(19): 6386. https://doi.org/10.1021/la9800147
33. Taft R.W., Grob C.A. Separation of polar and resonance effects in the ionization of 4-substituted pyridinium ions. J. Am. Chem. Soc. 1974. 96(4): 1236. https://doi.org/10.1021/ja00811a054
34. Young R.P. Infrared spectroscopic studies of adsorption and catalysis. Part 3. Carboxylic acids and their derivatives adsorbed on silica. Canadian J. Chem. 1969. 47(12): 2237. https://doi.org/10.1139/v69-362
35. Marshall K., Rochester C.H., Marshall K., Rochester C.H. Infrared study of the adsorption of oleic and linolenic acids onto the surface of silica immersed in carbon tetrachloride. J. Chem. Soc. Faraday Trans. 1. 1975. 71: 1754. https://doi.org/10.1039/f19757101754
36. Brei V.V., Gun'ko V.M., Dudnik V.V., Chuiko A.A. Study of kinetics and mechanisms of some unimolecular reactions on silica surfaces. Langmuir. 1992. 8(8): 1968. https://doi.org/10.1021/la00044a015
37. Brei V.V., Brichka A.V. A Study of the Brönsted Site Acidity of Crystalline and Amorphous Aluminosilicates: 2. Thermal Decomposition of Grafted Acetyl Groups. Adsorp. Sci. Technol. 1996. 14(6): 359. https://doi.org/10.1177/026361749601400603
38. Basyuk V.A. Infrared spectra of carboxylic compounds on silica surfaces at 1500-1800 cm-1. J. Appl. Spectrosc. 1994. 60: 29. https://doi.org/10.1007/BF02606071
39. Martinez R., Huff M. C., Barteau M. A. Synthesis of ketenes from carboxylic acids on functionalized silica monoliths at short contact times. Appl. Catal. A. 2000. 200(1-2): 79. https://doi.org/10.1016/S0926-860X(00)00649-9
40. Libby M.C., Watson P.C., Barteau M.A. Synthesis of Ketenes with oxide catalysts. Ind. Eng. Chem. Res. 1994. 33(12): 2904. https://doi.org/10.1021/ie00036a003
41. Azizova L.R., Kulik T.V., Palyanytsya B.B., Lipkovska N.A. Thermal and hydrolytic stability of grafted ester groups of carboxylic acids on the silica surface. J. Therm. Anal. Calorim. 2015. 122(2): 517. https://doi.org/10.1007/s10973-015-4828-1
42. Redhead P.A. Thermal desorption of gases. Vacuum. 1962. 12(4): 203. https://doi.org/10.1016/0042-207X(62)90978-8
43. Woodruff D.P., Delchar T.A. Modern Techniques of Surface Science. (London: Cambridge University Press, 1986).
44. Kislyuk M.U., Rozanov V.V. Temperature-programmed desorption and temperature-programmed reaction - methods of studying of kinetics and mechanisms of catalytic processes. Kinet. Katal. 1995. 36: 89.
45. Carter G. Thermal resolution of desorption energy spectra. Vacuum. 1962. 12(5): 245. https://doi.org/10.1016/0042-207X(62)90526-2
46. Gridneva T.V., Soroka P.I., Tertyshny O.A. Physical and chemical bases of the process of obtaining silica from rice husk. Bull. National Techn. Univer. "KhPI". 2010. 10: 124. [in Ukrainian].
47. Soukup M., Martinka M., Bosnić D., Čaplovičová M., Elbaum R., Lux A. Formation of silica aggregates in sorghum root endodermis is predetermined by cell wall architecture and development. Ann. Bot. 2017. 120(5): 739. https://doi.org/10.1093/aob/mcx060
DOI: https://doi.org/10.15407/hftp10.03.281
Copyright (©) 2019 T. V. Kulik, B. B. Palianytsia, N. N. Nastasiienko, S. S. Tarnavskyi
This work is licensed under a Creative Commons Attribution 4.0 International License.