Organophilic layered silicates for sorption removal of uranium(VI) from mine water
Abstract
Surface modifiсation of clay minerals from Cherkasy deposit (Ukraine) montmorillonite (layer silicate) and palygorskite (fibrous silicate) was performed using the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA). The successful modification of the surface of montmorillonite and palygorskite clays after treatment with HDTMA was confirmed by X-ray analysis and IR-spectra. The ζ-potential measurements of the organo-clays showed even a zeta potential reversion from negative to positive in the whole acidic pH range. In this case, the adsorbed surfactant molecules can form both mono and double layers on the surface of clay particles. The uranium(VI) sorption from mineralized groundwater on montmorillonite and palygorskite clays modified by HDTMA was investigated. The composition of the mineralized groundwater according to the main anionic components corresponded to the composition of the underground mineralized waters near the uranium ore mining and processing sites of the State Enterprise Eastern Mining and Processing Plant (Zhovty Vody, Ukraine), the total dissolved solids content was 5280 mg/l, pH 7.2. It has been shown that in contaminated mineralized groundwater, uranium(VI) is predominantly in anionic form, namely in the form of carbonate and sulfate complexes. Unmodified clays had no affinity to negative charged complexes while samples of HDTMA-modified clay minerals showed significant removal of uranium from mineralized water. The experimental data were applied to the Langmuir model of monomolecular adsorption and a good fit was obtained. It has been found that adsorption capacity increased with increasing HDTMA content in modified clays. The maximum sorption values in samples with a high degree of surface coverage and the formation of predominantly double layers of surfactants (ratio of surfactants exchange capacity 5) were obtained. These values for montmorillonite were higher (about 31 mg/g) than those for palygorskite, having a much smaller exchange capacity (about 28 mg/g). The method of organophilization of clays can be effectively used in environmental technologies for the removal of negatively and positively charged complexes of uranium from groundwater, for example, in the construction of permeable reaction barriers.References
1. Merkel B., Schipek M. The New Uranium Mining Boom. (Berlin, Heidelberg: Springer, 2011). https://doi.org/10.1007/978-3-642-22122-4
2. Kornilovych B.Yu., Sorokin O.G., Pavlenko V.M., Koshyk Yu.I. Pryrodooxoronni texnologiyi v uranovydobuvnij ta pererobnij promyslovosti. (Kyiv: Norma, 2011). [in Ukrainian].
3. Selvakumar R., Ramadoss G., Menon M.P., Rajendran K., Thavamani P., Naidu R., Megharaj M. Challenges and complexities in remediation of uranium contaminated soils: A review. J. Environ. Radioact. 2018. 192: 592. https://doi.org/10.1016/j.jenvrad.2018.02.018
4. Liu B., Peng T., Sun H., Yue H. Release behavior of uranium in uranium mill tailings under environmental conditions. J. Environ. Radioact. 2017. 171: 160. https://doi.org/10.1016/j.jenvrad.2017.02.016
5. Yin M., Sun J., Chen Y., Wang J., Shang J., Belshaw N., Shen C., Liu J., Li H., Linghu W., Xiao T., Dong X., Song G., Xiao E., Chen D. Mechanism of uranium release from uranium mill tailings under long-term exposure to simulated acid rain: Geochemical evidence and environmental implication. Environ. Pollut. 2019. 244: 174. https://doi.org/10.1016/j.envpol.2018.10.018
6. Mao X., Jiang R., Xiao W., Yu J. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 2015. 285: 419. https://doi.org/10.1016/j.jhazmat.2014.12.009
7. Kim S.S., Han G.S., Kim G.N., Koo D.S., Kim I.G., Choi J.W. Advanced remediation of uranium-contaminated soil. J. Environ. Radioact. 2016. 164: 239. https://doi.org/10.1016/j.jenvrad.2016.08.005
8. Newsome L., Morris K., Lloyd J.R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2014. 363: 164. https://doi.org/10.1016/j.chemgeo.2013.10.034
9. Bernhard G., Geipel G., Brendler V., Nitsche H. Uranium speciation in waters of different uranium mining areas. J. Alloys Compd. 1998. 271-273: 201. https://doi.org/10.1016/S0925-8388(98)00054-1
10. Chen B., Wang J., Kong L., Mai X., Zheng N., Zhong Q., Liang J., Chen D. Adsorption of uranium from uranium mine contaminated water using phosphate rock apatite (PRA): isotherm, kinetic and characterization studies. Colloids Surf. A. 2017. 520: 612. https://doi.org/10.1016/j.colsurfa.2017.01.055
11. Muhr-Ebert E., Wagner F., Walther C. Speciation of uranium: Compilation of a thermodynamic database and its experimental evalution using different analytical techniques. Appl. Geochem. 2019. 100: 213. https://doi.org/10.1016/j.apgeochem.2018.10.006
12. Myasoedova G.V., Nikashina V.A. Sorption materials for the extraction of radionuclides from aqueous media. Russ. Chem. J. 2006. 50(5): 55. [in Russian].
13. Misaelides P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater 2011. 144(1-2): 15. https://doi.org/10.1016/j.micromeso.2011.03.024
14. Misaelides P. Modified Clay and Zeolite Nanocomposite Materials. In: Clay minerals and zeolites for radioactive waste immobilization and containment: a concise overview. (Elsevier Inc. All rights reserved, 2019). https://doi.org/10.1016/B978-0-12-814617-0.00004-9
15. Langmuir D. Aqueous Environmental Geochemistry. (Prentice Hall: Upper Saddle River, NJ, USA, 1997).
16. Lee S.M., Tiwari D. Organo and Inorgano-Organo-Modified Clays in the Remediation of Aqueous Solutions: An Overview. Appl. Clay Sci. 2012. 59-60: 84. https://doi.org/10.1016/j.clay.2012.02.006
17. Kausar A. Iqbal M., Javed A., Aftab K., Nazli Z.H., Bhatti H. N., Nouren S. Dyes adsorption using clay and modified clay: A review. J. Mol. Liq. 2018. 256: 395. https://doi.org/10.1016/j.molliq.2018.02.034
18. Haggerty G., Bowman R.S. Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 1994. 28(3): 452. https://doi.org/10.1021/es00052a017
19. Brum M.C., Capitaneo J.L., Oliveira J.F. Removal of hexavalent chromium from water by adsorption onto surfactant modified montmorillonite. Miner. Eng. 2010. 23(3): 270. https://doi.org/10.1016/j.mineng.2009.10.008
20. Bors J., Dultz S., Riebe B. Organophilic bentonites as adsorbents for radionuclides: I. Adsorption of ionic fission products. Appl. Clay Sci. 2000. 16(1-2): 1. https://doi.org/10.1016/S0169-1317(99)00041-1
21. Majdan M., Pikus S., Gajowiak A., Gładysz-Płaska A., Krzyzanowska H., Zuk J., Bujacka M. Characterization of uranium (VI) sorption by organobentonite. Appl. Surf. Sci. 2010. 256(17): 5416. https://doi.org/10.1016/j.apsusc.2009.12.123
22. Bergaya F., Theng B.K.G., Lagaly G. Handbook of Clay Science. (Elsevier Science, 2006).
23. Xu S., Boyd S.A. Alternative model for cationic surfactant adsorption by layer silicates. Environ. Sci. Technol. 1995. 29(12): 3022. https://doi.org/10.1021/es00012a020
24. Atkin R., Craig V.S.J., Wanless E.J., Biggs S. Mechanism of cationic surfactant adsorption at the solid-aqueous interface. Adv. Colloid Interface Sci. 2003. 103(3): 219. https://doi.org/10.1016/S0001-8686(03)00002-2
25. Chiu C.-W., Huang T.-K., Wang Y.-C., Alamani B.G., Lin J.-J. Intercalation strategies in clay/polymer hybrids. Prog. Polym. Sci. 2014. 39(3): 443. https://doi.org/10.1016/j.progpolymsci.2013.07.002
26. Lagaly G. Ogawa M., Dékány I. Clay Mineral Organic Interactions In: Handbook of Clay Science. (Elsevier, 2006). https://doi.org/10.1016/S1572-4352(05)01010-X
27. He H., Yhou Q., Martens W.N., Kloprogge T.J., Zuan P., Xi Z., Yhu J., Frost R.L. Microstructure of HDTMA+- Modified Montmorillonite and its Influence on Sorption Characteristics. Clays Clay Miner. 2006. 54(6): 689. https://doi.org/10.1346/CCMN.2006.0540604
28. Zadaka D., Radian A., Mishael Y.G. Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers. J. Colloid Interface Sci. 2010. 352(1): 171. https://doi.org/10.1016/j.jcis.2010.08.010
29. Kotal M., Bhowmick A.K. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci. 2015. 51: 127. https://doi.org/10.1016/j.progpolymsci.2015.10.001
30. Tarasevych Yu. I., Ovcharenko F.D. Adsorption on clay minerals. (Kyiv: Naukova Dumka, 1975). [in Russian].
31. Orlov D.S., Sadovnikova L.K., Sukhanova N.I. Soil chemistry. (Moscow: Vysshaya Shkola, 2005). [in Russian].
32. Delgado A.V., Gonzalez-Caballero F., Hunter R.J., Koopal L.K., Lyklema J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 2007. 309(2): 194. https://doi.org/10.1016/j.jcis.2006.12.075
33. Ohshima H. A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles. J. Colloid Interface Sci. 1994. 168(1): 269. https://doi.org/10.1006/jcis.1994.1419
34. Kornilovych B., Wireman M., Ubaldini S., Guglietta D., Koshik Yu., Caruso B., Kovalchuk I. Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies. Metals. 2018. 8(6): 408. https://doi.org/10.3390/met8060408
35. Leroy P., Revil A. A triple-layer model of the surface electrochemical properties of clay minerals. J. Colloid Interface Sci. 2004. 270(2): 371. https://doi.org/10.1016/j.jcis.2003.08.007
36. Pecini E.M., Avena M.J. Measuring the isoelectric point of the edges of clay mineral particles: The case of montmorillonite. Langmuir. 2013. 29(48): 14926. https://doi.org/10.1021/la403384g
37. Xu S., Boyd A. Cationic Surfactant Adsorption by Swelling and Nonswelling Layer Silicates. Langmuir. 1995. 11(7): 2508. https://doi.org/10.1021/la00007a033
38. Hojiev R., Ersever G., Karaağaçlıoğlu I.E., Karakaş F., Boylu F. Changes on montmorillonite characteristics through modification. Appl. Clay Sci. 2016. 127-128: 105. https://doi.org/10.1016/j.clay.2016.03.042
39. Wang W., Gu B., Liang L., Hamilton W.A. Adsorption and structural arrangement of cetyltrimethylammonium cations at the silica nanoparticle - water interface. J. Phys. Chem. B. 2004. 108(45): 17477. https://doi.org/10.1021/jp048325f
40. Bryleva E.Y., Vodolazkaya N.A., Mchedlov-Petrossyan N.O., Samokhina L.V., Matveevskaya N.A., Tolmachev A.V. Interfacial properties of cetyltrimethylammonium-coated SiO2 nanoparticlesin aqueous media asstudied by using different indicator dyes. J. Colloid Interface Sci. 2007. 316(2): 712. https://doi.org/10.1016/j.jcis.2007.07.036
41. Galan E., Singer A. Developments in Palygorskite-Sepiolite Research. V. 3. (Elsevier, 2011).
42. Puigdomènech I., Colas E., Glive M., Campos I., Garcia D. A tool to draw chemical equilibrium diagrams using SIT: Applications to geochemical systems and radionuclide solubility. MRS Online Proceedings Library Archive. 2014. 1665: 111. https://doi.org/10.1557/opl.2014.635
43. Fujiwara K., Yamana H., Fujii T., Kawamoto K., Sasaki T., Moriyama H. Solubility Product of Hexavalent Uranium Hydrous Oxide. J. Nucl. Sci. Technol. 2005. 42(3): 289. https://doi.org/10.1080/18811248.2005.9726392
44. Altmaier M., Yalçıntas E., Gaona X., Neck V., Müller R., Schlieker M., Fanghänel T. Solubility of U(VI) in chloride solutions. I. The stable oxides/hydroxides in NaCl systems, solubility products, hydrolysis constants and SIT coefficients. J. Chem. Thermodyn. 2017. 114: 2. https://doi.org/10.1016/j.jct.2017.05.039
45. Kramer-Schnabel U., Bischoff H., Xi R.H., Marx G. Solubility Products and Complex Formation Equilibria in the Systems Uranyl Hydroxide and Uranyl Carbonate at 25 °C and I = 0.1 M. Radiochim. Acta. 1992. 56: 183. https://doi.org/10.1524/ract.1992.56.4.183
46. Titaeva N.A. Nuclear geochemistry. (Moscow: MGU, 2000). [in Russian].
47. Kovalchuk I.A., Golembiovskyi A.O., Kornilovych B.Yu. Sorption of Cr(VI) and U(VI) ions by palygorskite modified with cationic surfactants. Reports of the National Academy of Sciences of Ukraine. 2011. 2011(11): 131. [in Ukrainian].
48. Golembiovskyi A.O., Kovalchuk I.A., Kornilovych B.Yu., Zhdanyuk N.V. Remediation of the U(VI) Ions from Waters Using Organic Clays. Naukovi visti NTUU - KPI. 2011. 2011(6): 154. [in Ukrainian].
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.