Хімія, фізика та технологія поверхні, 2020, 11 (2), 215-227.

Органофілізовані шаруваті силікати для сорбційного вилучення сполук урану(VI) з мінералізованих вод



DOI: https://doi.org/10.15407/hftp11.02.215

I. A. Kovalchuk, A. N. Laguta, B. Yu. Kornilovych, V. Yu. Tobilko

Анотація


Поверхню природних глинистих мінералів монтморилоніту (шаруватий силікат) та палигорськіту (шарувато-стрічковий силікат) Черкаського родовища (Україна) модифікували катіонною поверхнево-активною речовиною гексадецилтриметиламоній бромідом (ГДТМА). Результати рентгенографічних досліджень та ІЧ-спектри підтверджують успішне модифікування поверхні монтморилонітових та палигорськітових глин після обробки ГДТМА. Виміри ζ-потенціалу органоглин показали, що можлива навіть зміна знаку дзета-потенціалу частинок з негативного до позитивного в усьому кислотному діапазоні значень рН. При цьому адсорбовані молекули ГДТМА можуть утворювати на поверхні частинок глин як моно-, так і подвійні шари. Досліджено сорбцію урану(VI) на органофілізованих глинах з мінералізованих підземних вод, склад яких за основними аніонними компонентами відповідав складу підземних мінералізованих вод біля сховища шламових відходів гідрометалургійної переробки уранових руд Східного гірничо-збагачувального комбінату (м. Жовті Води, Україна), загальний солевміст становив 5280 мг/дм3, рН 7.2. Показано, що у забруднених мінералізованих підземних водах уран(VI) знаходиться переважно у вигляді аніонних форм, а саме карбонатних і сульфатних комплексів. Немодифіковані глини практично не сорбують негативно заряджені U(VI) комплекси, в той час як для зразків глинистих мінералів, що були модифіковані ГДТМА, характерні значні величини вилучення урану з мінералізованих вод. Було показано, що експериментальні дані добре узгоджуються з рівнянням мономолекулярної адсорбції Ленгмюра. Встановлено, що величина сорбції урану(VI) модифікованими глинами зростає при збільшенні в них вмісту ГДТМА. Максимальні величини сорбції спостерігаються для зразків з високим ступенем покриття поверхні і утворенням на ній переважно подвійних шарів ПАР (при співвідношенні ПАР:КОЄ 5), при цьому ці значення вищі для монтморилоніту і становлять  близько 31 мг/г, в той час як для палигорськіту, що має значно меншу обмінну ємність, становлять близько 28 мг/г. Метод органофілізації глин перспективний для використання в природоохоронних технологіях при створенні проникних реакційних бар’єрів у грунті для вилучення з підземних вод як позитивно, так і негативно заряджених комплексів урану.


Ключові слова


уран(VI); мінералізовані підземні води; шаруваті силікати; катіонні ПАР; сорбція

Повний текст:

PDF

Посилання


1. Merkel B., Schipek M. The New Uranium Mining Boom. (Berlin, Heidelberg: Springer, 2011). https://doi.org/10.1007/978-3-642-22122-4

2. Kornilovych B.Yu., Sorokin O.G., Pavlenko V.M., Koshyk Yu.I. Pryrodooxoronni texnologiyi v uranovydobuvnij ta pererobnij promyslovosti. (Kyiv: Norma, 2011). [in Ukrainian].

3. Selvakumar R., Ramadoss G., Menon M.P., Rajendran K., Thavamani P., Naidu R., Megharaj M. Challenges and complexities in remediation of uranium contaminated soils: A review. J. Environ. Radioact. 2018. 192: 592. https://doi.org/10.1016/j.jenvrad.2018.02.018

4. Liu B., Peng T., Sun H., Yue H. Release behavior of uranium in uranium mill tailings under environmental conditions. J. Environ. Radioact. 2017. 171: 160. https://doi.org/10.1016/j.jenvrad.2017.02.016

5. Yin M., Sun J., Chen Y., Wang J., Shang J., Belshaw N., Shen C., Liu J., Li H., Linghu W., Xiao T., Dong X., Song G., Xiao E., Chen D. Mechanism of uranium release from uranium mill tailings under long-term exposure to simulated acid rain: Geochemical evidence and environmental implication. Environ. Pollut. 2019. 244: 174. https://doi.org/10.1016/j.envpol.2018.10.018

6. Mao X., Jiang R., Xiao W., Yu J. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 2015. 285: 419. https://doi.org/10.1016/j.jhazmat.2014.12.009

7. Kim S.S., Han G.S., Kim G.N., Koo D.S., Kim I.G., Choi J.W. Advanced remediation of uranium-contaminated soil. J. Environ. Radioact. 2016. 164: 239. https://doi.org/10.1016/j.jenvrad.2016.08.005

8. Newsome L., Morris K., Lloyd J.R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 2014. 363: 164. https://doi.org/10.1016/j.chemgeo.2013.10.034

9. Bernhard G., Geipel G., Brendler V., Nitsche H. Uranium speciation in waters of different uranium mining areas. J. Alloys Compd. 1998. 271-273: 201. https://doi.org/10.1016/S0925-8388(98)00054-1

10. Chen B., Wang J., Kong L., Mai X., Zheng N., Zhong Q., Liang J., Chen D. Adsorption of uranium from uranium mine contaminated water using phosphate rock apatite (PRA): isotherm, kinetic and characterization studies. Colloids Surf. A. 2017. 520: 612. https://doi.org/10.1016/j.colsurfa.2017.01.055

11. Muhr-Ebert E., Wagner F., Walther C. Speciation of uranium: Compilation of a thermodynamic database and its experimental evalution using different analytical techniques. Appl. Geochem. 2019. 100: 213. https://doi.org/10.1016/j.apgeochem.2018.10.006

12. Myasoedova G.V., Nikashina V.A. Sorption materials for the extraction of radionuclides from aqueous media. Russ. Chem. J. 2006. 50(5): 55. [in Russian].

13. Misaelides P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater 2011. 144(1-2): 15. https://doi.org/10.1016/j.micromeso.2011.03.024

14. Misaelides P. Modified Clay and Zeolite Nanocomposite Materials. In: Clay minerals and zeolites for radioactive waste immobilization and containment: a concise overview. (Elsevier Inc. All rights reserved, 2019). https://doi.org/10.1016/B978-0-12-814617-0.00004-9

15. Langmuir D. Aqueous Environmental Geochemistry. (Prentice Hall: Upper Saddle River, NJ, USA, 1997).

16. Lee S.M., Tiwari D. Organo and Inorgano-Organo-Modified Clays in the Remediation of Aqueous Solutions: An Overview. Appl. Clay Sci. 2012. 59-60: 84. https://doi.org/10.1016/j.clay.2012.02.006

17. Kausar A. Iqbal M., Javed A., Aftab K., Nazli Z.H., Bhatti H. N., Nouren S. Dyes adsorption using clay and modified clay: A review. J. Mol. Liq. 2018. 256: 395. https://doi.org/10.1016/j.molliq.2018.02.034

18. Haggerty G., Bowman R.S. Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 1994. 28(3): 452. https://doi.org/10.1021/es00052a017

19. Brum M.C., Capitaneo J.L., Oliveira J.F. Removal of hexavalent chromium from water by adsorption onto surfactant modified montmorillonite. Miner. Eng. 2010. 23(3): 270. https://doi.org/10.1016/j.mineng.2009.10.008

20. Bors J., Dultz S., Riebe B. Organophilic bentonites as adsorbents for radionuclides: I. Adsorption of ionic fission products. Appl. Clay Sci. 2000. 16(1-2): 1. https://doi.org/10.1016/S0169-1317(99)00041-1

21. Majdan M., Pikus S., Gajowiak A., Gładysz-Płaska A., Krzyzanowska H., Zuk J., Bujacka M. Characterization of uranium (VI) sorption by organobentonite. Appl. Surf. Sci. 2010. 256(17): 5416. https://doi.org/10.1016/j.apsusc.2009.12.123

22. Bergaya F., Theng B.K.G., Lagaly G. Handbook of Clay Science. (Elsevier Science, 2006).

23. Xu S., Boyd S.A. Alternative model for cationic surfactant adsorption by layer silicates. Environ. Sci. Technol. 1995. 29(12): 3022. https://doi.org/10.1021/es00012a020

24. Atkin R., Craig V.S.J., Wanless E.J., Biggs S. Mechanism of cationic surfactant adsorption at the solid-aqueous interface. Adv. Colloid Interface Sci. 2003. 103(3): 219. https://doi.org/10.1016/S0001-8686(03)00002-2

25. Chiu C.-W., Huang T.-K., Wang Y.-C., Alamani B.G., Lin J.-J. Intercalation strategies in clay/polymer hybrids. Prog. Polym. Sci. 2014. 39(3): 443. https://doi.org/10.1016/j.progpolymsci.2013.07.002

26. Lagaly G. Ogawa M., Dékány I. Clay Mineral Organic Interactions In: Handbook of Clay Science. (Elsevier, 2006). https://doi.org/10.1016/S1572-4352(05)01010-X

27. He H., Yhou Q., Martens W.N., Kloprogge T.J., Zuan P., Xi Z., Yhu J., Frost R.L. Microstructure of HDTMA+- Modified Montmorillonite and its Influence on Sorption Characteristics. Clays Clay Miner. 2006. 54(6): 689. https://doi.org/10.1346/CCMN.2006.0540604

28. Zadaka D., Radian A., Mishael Y.G. Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers. J. Colloid Interface Sci. 2010. 352(1): 171. https://doi.org/10.1016/j.jcis.2010.08.010

29. Kotal M., Bhowmick A.K. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci. 2015. 51: 127. https://doi.org/10.1016/j.progpolymsci.2015.10.001

30. Tarasevych Yu. I., Ovcharenko F.D. Adsorption on clay minerals. (Kyiv: Naukova Dumka, 1975). [in Russian].

31. Orlov D.S., Sadovnikova L.K., Sukhanova N.I. Soil chemistry. (Moscow: Vysshaya Shkola, 2005). [in Russian].

32. Delgado A.V., Gonzalez-Caballero F., Hunter R.J., Koopal L.K., Lyklema J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 2007. 309(2): 194. https://doi.org/10.1016/j.jcis.2006.12.075

33. Ohshima H. A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles. J. Colloid Interface Sci. 1994. 168(1): 269. https://doi.org/10.1006/jcis.1994.1419

34. Kornilovych B., Wireman M., Ubaldini S., Guglietta D., Koshik Yu., Caruso B., Kovalchuk I. Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies. Metals. 2018. 8(6): 408. https://doi.org/10.3390/met8060408

35. Leroy P., Revil A. A triple-layer model of the surface electrochemical properties of clay minerals. J. Colloid Interface Sci. 2004. 270(2): 371. https://doi.org/10.1016/j.jcis.2003.08.007

36. Pecini E.M., Avena M.J. Measuring the isoelectric point of the edges of clay mineral particles: The case of montmorillonite. Langmuir. 2013. 29(48): 14926. https://doi.org/10.1021/la403384g

37. Xu S., Boyd A. Cationic Surfactant Adsorption by Swelling and Nonswelling Layer Silicates. Langmuir. 1995. 11(7): 2508. https://doi.org/10.1021/la00007a033

38. Hojiev R., Ersever G., Karaağaçlıoğlu I.E., Karakaş F., Boylu F. Changes on montmorillonite characteristics through modification. Appl. Clay Sci. 2016. 127-128: 105. https://doi.org/10.1016/j.clay.2016.03.042

39. Wang W., Gu B., Liang L., Hamilton W.A. Adsorption and structural arrangement of cetyltrimethylammonium cations at the silica nanoparticle - water interface. J. Phys. Chem. B. 2004. 108(45): 17477. https://doi.org/10.1021/jp048325f

40. Bryleva E.Y., Vodolazkaya N.A., Mchedlov-Petrossyan N.O., Samokhina L.V., Matveevskaya N.A., Tolmachev A.V. Interfacial properties of cetyltrimethylammonium-coated SiO2 nanoparticlesin aqueous media asstudied by using different indicator dyes. J. Colloid Interface Sci. 2007. 316(2): 712. https://doi.org/10.1016/j.jcis.2007.07.036

41. Galan E., Singer A. Developments in Palygorskite-Sepiolite Research. V. 3. (Elsevier, 2011).

42. Puigdomènech I., Colas E., Glive M., Campos I., Garcia D. A tool to draw chemical equilibrium diagrams using SIT: Applications to geochemical systems and radionuclide solubility. MRS Online Proceedings Library Archive. 2014. 1665: 111. https://doi.org/10.1557/opl.2014.635

43. Fujiwara K., Yamana H., Fujii T., Kawamoto K., Sasaki T., Moriyama H. Solubility Product of Hexavalent Uranium Hydrous Oxide. J. Nucl. Sci. Technol. 2005. 42(3): 289. https://doi.org/10.1080/18811248.2005.9726392

44. Altmaier M., Yalçıntas E., Gaona X., Neck V., Müller R., Schlieker M., Fanghänel T. Solubility of U(VI) in chloride solutions. I. The stable oxides/hydroxides in NaCl systems, solubility products, hydrolysis constants and SIT coefficients. J. Chem. Thermodyn. 2017. 114: 2. https://doi.org/10.1016/j.jct.2017.05.039

45. Kramer-Schnabel U., Bischoff H., Xi R.H., Marx G. Solubility Products and Complex Formation Equilibria in the Systems Uranyl Hydroxide and Uranyl Carbonate at 25 °C and I = 0.1 M. Radiochim. Acta. 1992. 56: 183. https://doi.org/10.1524/ract.1992.56.4.183

46. Titaeva N.A. Nuclear geochemistry. (Moscow: MGU, 2000). [in Russian].

47. Kovalchuk I.A., Golembiovskyi A.O., Kornilovych B.Yu. Sorption of Cr(VI) and U(VI) ions by palygorskite modified with cationic surfactants. Reports of the National Academy of Sciences of Ukraine. 2011. 2011(11): 131. [in Ukrainian].

48. Golembiovskyi A.O., Kovalchuk I.A., Kornilovych B.Yu., Zhdanyuk N.V. Remediation of the U(VI) Ions from Waters Using Organic Clays. Naukovi visti NTUU - KPI. 2011. 2011(6): 154. [in Ukrainian].




DOI: https://doi.org/10.15407/hftp11.02.215

Copyright (©) 2020 I. A. Kovalchuk, A. N. Laguta, B. Yu. Kornilovych, V. Yu. Tobilko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.