Хімія, фізика та технологія поверхні, 2010, 1 (4), 441-449.

Особливості синтезу нанодисперсного титанату барію та дослідження його властивостей



S. V. Khalameida

Анотація


Досліджено взаємодію оксиду барію та діоксиду титану з різною питомою поверхнею і кристалічною будовою при механохімічній, мікрохвильовій та гідротермальній обробках. Методами РФА, ІЧ-спектроскопії з Фур’є-перетворенням, ЕПР- та електронної спектроскопії в ультрафіолетовій та видимій області встановлено, що використання низькотемпературних модифікацій TiO2 призводить до формування наночастинок титанату барію з високою питомою поверхнею та дефектною структурою. Для синтезованих зразків титанату барію спостерігається збільшення поглинання, зсув межі поглинання в видиму область та підвищена активність в реакції фотокаталітичного розкладу сафраніну Т в водних розчинах. При синтезі титанату барію в водному середовищі поверхня збагачується бренстедовськими основними центрами.

Повний текст:

PDF (Русский)

Посилання


Smith M.B., Page K., Siegrist T. et .al. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3 // J. Am. Chem. Soc. – 2008. – V. 130, N 22. – P. 6955–6963.

Kong L.B., Zhang T.S., Ma J. Boey F. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique // Prog. Mater. Sci. – 2008. – V. 53, N 2. – P. 207–322.

Ahuja S., Kutty T.R.N. Nanoparticles of SrTiOprepared by gel to crystallite conversion and their photocatalytic activity in the mineralization of phenol // J. Photochem. Photobiol. A. – 1996. – V. 97, N 1–2. – P. 99–107.

Wang J., Yin S., Komatsu M., et al. Photo-oxidation properties of nitrogen doped SrTiO3 made by mechanical activation // Appl. Catal. B. – 2004. – V. 52, N 1. – P. 11–21.

Zieliñska B., Borowiak-Palena E., Kalenczuka R.J. Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors // Int. J. Hydrogen Energy. – 2008. – V. 33, N 7. – P. 1797–1802.

Giocordi J.L., Rohrer G.S. The influence of the dipolar field effect on the photochemical reactivity of Sr2Nb2O7 and BaTiOmicrocrystals // Top. Catal. – 2008. – V. 49. – P. 18–23.

Guin R., Das S.K., Saha S.K. Adsorption studies of zinc ions on barium titanate from aqueous solution // Radiochim. Acta. – 2002. – V. 90, N 1. – P. 53–56.

Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O. et al. Mechanochemical synthesis of barium titanate // J. Eur. Ceram. Soc. – 2005. – V. 25. – P. 1985–1989.

Miclea C., Tanasoiu C., Spanulescu I. et al. Microstructure and Properties of Barium Titanate Ceramics Prepared by Mechanochemical Synthesis // Rom. J. Inform. Sci. Technol. – 2007. – V. 10, N 4. – P. 335–345.

Sydorchuk V., Zazhigalov V., Khalameida S. et al. Investigation of physicochemical transformation at mechanochemical, hydrothermal and microwave treatment of barium titanyloxalate // J. Alloys Compd. – 2009. – V. 482, N 1–2. – P. 229–234.

Lee B.W., Choi C.S. Hydrothermal synthesis of barium titanate powders from a co-precipitated precursor // J. Ceram. Process. Res. –2003. – V. 4, N 3. – P. 151–154.

Newalkar B.L., Komarneni S., Katsuki H. Microwave-hydrothermal synthesis and characterization of barium titanate powders // Mater. Res. Bull. – 2001. – V. 36, N 13–14. – P. 2347–2355.

Demydov D., Labaunde K.J. Characterization of mixed metal oxides SrTiO3 and BaTiO3 synthesized by a modified aerogel procedure // J. Non-Cryst. Solids. – 2004. –V. 350. – P. 165–172.

Badheka P., Qi L., Lee B. Phase transition in barium titanate nanocrystals by chemical treatment // J. Eur. Ceram. Soc. – 2006. – V. 26, N 8. – P. 1393–1400.

Indris S., Amade R., Heitjans P. et al. Preparation by high- energy milling, characterization, and catalytic properties of nanocrystalline TiO2 // J. Phys. Chem. B. – 2005. – V. 109, N 49. – P. 23274–23278.

Pavlović V.P., Popović D., Krstić J., et al. Influence of mechanical activation on the structure of ultrafine BaTiO3 powders // J. Alloys Compd. – 2009. – V. 486, N 1–2. – P. 633–639.

Gesenhues U. The effects of plastic deformation on band gap, electronic defect states and lattice vibrations of rutile // J. Phys. Chem. Solids. – 2007. – V. 68, N 2. – P. 224–235.

Gupta V.K., Jain R., Mittal A. et al. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst // J. Colloid Interface Sci. – 2007. – V. 309, N 2. – P. 464-469.

Капинус Е.И., Викторова Т.И., Халявка Т.А. Зависимость скорости фотокаталитической деструкции сафранина от концентрации катализатора // Теорет. эксперим. химия. – 2009. – Т. 45, № 2. – С. 104–107.

Хайнике Г. Трибохимия. – Москва: Мир, 1987. – 569 с.

Lewis J.A. Colloidal processing of ceramics // J. Am. Ceram. Soc. – 2000. – V. 83, N 10. – P. 2341–2359.

Vamvakaki M., Billingham N.C., Armes S.P. et al. Controlled structure copolymers for the dispersion of high-perfomance ceramics in aqueous media // J. Mater. Chem. – 2001. – V. 11. – P. 2437–2444.

Shen Z.-G., Chen J.F., Zou H.-K., Yun J. Dispersion of nanosized aqueous suspensions of barium titanate with ammonium polyacrilate // J. Colloid Interface Sci. – 2004. – V. 275, N 1. – P. 158–164.

Blanco-Lopez M.C., Rand B., Riley F.L. The isoelectric point of BaTiO3 // J. Eur. Ceram. Soc. – 2000. – V. 20. – P. 107–118.

Hsu R.-C., Ying K.-L., Chen L.-P. Dispersion properties of BaTiO3 colloids with amphoteric polyelectrolites // J. Am. Ceram. Soc. – 2005. – V. 88, N 3. – P. 524–529.




Copyright (©) 2010 S. V. Khalameida

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.