Хімія, фізика та технологія поверхні, 2022, 13 (4), 498-505.

Вплив кислотної модифікації природних цеолітів на адсорбцію деяких фармакополютантів



DOI: https://doi.org/10.15407/hftp13.04.498

L. G. Eprikashvili, G. P. Tsintskaladze, T. N. Kordzakhia, M. G. Zautashvili, N. V. Pirtskhalava, M. A. Dzagania, T. M. Sharashenidze

Анотація


Стічні та природні води містять різні забруднюючі речовини як природного, так і штучного походження. Очищення цих вод здійснюється комплексно різними методами, що значно збільшує витрати. В даний час дуже актуальною є проблема потрапляння великої кількості ліків у стічні води. Ліки в незміненому вигляді або у вигляді метаболітів потрапляють у стічні води разом із продуктами життєдіяльності живого організму. Для вирішення актуальних практичних завдань очищення води останнім часом розглядається можливість використання природних цеолітних матеріалів як сорбентів. Будучи природними алюмосилікатами каркасної структури, ці мінерали мають низку унікальних адсорбційних властивостей, які можуть бути використані в процесах водопідготовки. Обробка кислотними розчинами (лугами, розчинами солей і деяких органічних сполук) дозволяє значно поліпшити їх сорбційні характеристики для вирішення конкретної задачі. Цеоліти, будучи хімічно стійкими мінералами, здатні протистояти впливу хімічно активного середовища без руйнування кристалічної ґратки. У роботі досліджено вплив соляної кислоти (НС1) на природні цеоліти грузинських родовищ (морденіт і кліноптилоліт) та можливість їхнього використання для адсорбційного очищення стічних вод. Ідентифікацію модифікованих цеолітів проводили на основі рентгенівських дифрактограм та ІЧ-спектрів. Показано, що природні кліноптилоліти (морденіт і цеоліт) навіть після кислотної модифікації характеризуються високою термостабільністю і кислотостійкістю, а отримані Н-форми відрізняються високою концентрацією активних центрів; також показано ефективність адсорбційного методу очищення стічних вод від деяких фармакополютантів при використанні кислотно-модифікованих природних цеолітів. Цей метод дозволить вирішити проблему надходження в середовище препаратів з меншими витратами

Ключові слова


природні цеоліти; кліноптилоліт; морденіт; очищення стічних вод

Повний текст:

PDF (English)

Посилання


Rubashvili I., Eprikashvili L., Kordzakhia T. Zautashvili M., Pirtskhalava N., Dzagania M. Adsorptive removal study of the frequently used fluoroquinolone antibiotics - moxifloxacin and norfloxacin from wastewaters using natural zeolites. Mediterranean Journal of Chemistry. 2019. 9(2): 142. https://doi.org/10.13171/mjc92190921700ar

Rubashvili I., Zautashvili M., Kordzakhia T., Eprikashvili L. Development and validation of quantitative determination HPLC metods of the fluoroquinolone antibiotics - moxifloxacin hydrochloride and norfloxacine in support of adsorption study on natural zeolites. Periódico Tchê Química. 2019. 16(33): 10. https://doi.org/10.52571/PTQ.v16.n33.2019.25_Periodico33_pgs_10_20.pdf

EprikashviliL., KordzakhiaT., ZautashviliM.,RubashviliaI., PirtskhalavaN., DzaganiaM., TsintskaladzeG., AntiaG.Effect of Clinoptilolite Acid Activation on Ceftriaxone Sorption from Wastewaters.Res. J. Chem. Environ. 2021. 25(5): 80.

Eprikashvili L., Kordzakhia T., Zautashvili M., Rubashvili I., Pirtskhalava N., Dzagania M., Tsintskaladze G.Feability study for use of natural mordenite in purification processes of wastewaters from pharmaceutical pollutants. Int. J. Adv. Res. 2021. 9(03): 683.

Keltsev N.V. Basics of adsorption technics. Chapter 3: Main types of porous adsorbents. (Moscow: Chemistry, 1984). P. 77. [in Russian].

Greg S., Sing K. Adsorption, specific surface area, porosity. (Moscow, 1984). [in Russian].

Rashed M.N. Adsorption technique for the removal of organic pollutants from water and wastewater. Chapter 7. Organic pollutants - monitoring, risk and treatment. (London: IntechOpen, 2013).P.167.

Bryan L.E., Bedard J., Wong S., Chamberland S. Quinolone antimicrobial agents: Mechanism of action and resistance development. Clin. Invest. Med. 1989. 12(1): 14.

Golet E.M., Alder A.C., Giger W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed.Environ. Sci. Technol.2002. 36(17): 3645. https://doi.org/10.1021/es0256212

Prutthiwanasan B., Phechkrajang C., Suntornsuk L. Fluorescent labeling of ciprofloxacin and norfloxacin and its application for residues analysis in surface water. Talanta.2016.159: 74. https://doi.org/10.1016/j.talanta.2016.05.080

Ai Jia, Yi Wan, Yang Xiao, Jianying Hu. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant.Water Res.2012.46(2): 387. https://doi.org/10.1016/j.watres.2011.10.055

Jiang N., Shang R., Heijman S.G.J., Rietveld L.C.High-silica zeolites for adsorption of organic micro-pollutants in water treatment.Water Res.2018.144: 145. https://doi.org/10.1016/j.watres.2018.07.017

Narayanan S., Batchelor W., Webley P.A. A review on the use of zeolites to create valuable paper products and paper-like adsorbent materials. Appita J.2013. 66(3): 235.

Ackley M.W., Rege S.U., Saxena H. Application of natural zeolite in the purification and separation of gases. Microporous Mesoporous Mater.2003. 61(1-3): 25. https://doi.org/10.1016/S1387-1811(03)00353-6

Caro J., Noack M. Zeolite membranes- Recent developments and progress.Microporous Mesoporous Mater.2008. 115(3): 215. https://doi.org/10.1016/j.micromeso.2008.03.008

Wang S., Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J.2010. 156(1): 11. https://doi.org/10.1016/j.cej.2009.10.029

The U.S. Pharmacopeia national formulary USP 40 NF 35. (Baltimore: United Book Press,2017).

European Federation of National Associations of Measurement, Testing and Analytical Laboratories. Guide to the Evaluation of Measurement Uncertainty for Quantitative Test Results, Technical Report No.1/2006. (Paris:EUROLAB Technical Secretariat,2006).

Ermer J., Miller J.H. Method Validation in Pharmaceutical Analysis.(Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2005).

Cook R.R. Assessment of Uncertainties of Measurement for Calibration and Testing Laboratories. 2nd Ed. (Australia: National Association of Testing Authorities, 2002).

Eurachem Guide: The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics. 2nd Ed. 2014.

Guide for evaluation of uncertainty in calibration, International accreditationservice, INC, CA 90601 USA. 2008.

ICH Harmonized tripartite guideline: Validation of analytical procedures: text and methodology, Q2 (R1). 2005.

Breck D. Ion exchange reactions on zeolites. Chapter 7. Zeolite molecular sieves. (New York, London, Sydney, Toronto:John Wiley & Sons,1974). P. 544.

Kowalczyk P., Sprynskyy M., Terzyk A.P., Lebedynets M., Namiesnik J., Buszewski B. Porous structure of natural and modified clinoptilolites. J. Colloid Interface Sci. 2006. 297(1): 77. https://doi.org/10.1016/j.jcis.2005.10.045

Flanigen E.M., Khatami H., Szymanski H.A. Infrared Structural Studies of Zeolites Frameworks. Adv. Chem. 1974. 101:460. https://doi.org/10.1021/ba-1971-0101.ch016

Papko L.F., Kravchuk A.P. Physicochemical methods for the study of inorganic substances and materials. Workshop. Part 4. Infrared spectroscopy. (Minsk:Belarusian State Technological University,2013). P.48.[in Russian].

Hussein M.M., Khader Kh.M., Musleh S.M.Characterization of raw zeolite and surfactant-modified zeolite and their use in removal of selected organic pollutants from water. Int. J. Chem. Sci. 2014. 12(3): 815.

Hatada K., Ono Y., Ushiki Y.Infrared Spectroscopic Study of ZSM-5 Zeolites. JournalZeitschrift für Physikalische Chemie.1979. 117: 37. https://doi.org/10.1524/zpch.1979.117.117.037

Andronikashvili T.G., Tsitsishvili G.V., Chumburidze T.A., Skhirtladze N.I., Eprikashvili L.G. Chromatographic properties of modified mordenite-bearing tuffs. Natural zeolites. In: Proceedings of the Soviet-Bulgarian symposium:On the study of the physical and chemical properties of natural zeolites.(Tbilisi, 1979). P.220.

Tsintskaladze G., Eprikashvili L., Kordzakhia T., Nanikashvili P., Sharashenidze T. Thermal and chemical modification of natural mordenites as a method for obtaining new zeolite materials.Surface. 2012. 4(19): 153.

Tsintskaladze G., Eprikashvili L., Pirtskhalava N., Zautashvili M., Tsitsishvili V., Kordzakhia T. Structure of new zeolite nanomaterials and opportunities of their application in gas chromatography. Him. Fiz. Tehnol. Poverhni. 2011.2(3): 336.[in Russian].

Vyacheslavov A.S., Pomerantseva E.A. Measurement of surface area and porosity by capillary nitrogen condensation. (Moscow, 2006).[in Russian].

Castillo J.M., Silvestro-Albero J., Rodriguez-Reinoso F., Vlugt Th.J.H., Calero S. Water adsorption in hydrophilic zeolites: experiment and simulation. Phys. Chem. Chem. Phys.2013.40(15): 17374. https://doi.org/10.1039/c3cp52910j

Andronikashvili T., Kordzakhia T., Eprikashvili L., Gamkrelidze E. Zeolite Application for Desiccation of solvents Used in HPLC. Chem. Anal. (Warsaw).1997. 42: 555.

Koganovsky A.M., Klimenko N.A., Levchenko T.M., Roda I.G. Adsorption of organic matter from water. (Leningrad: Chemistry, 1990).[in Russian].

Kordzakhia T.N., Eprikashvili L.G., Kalinichev A.I., Andronikashvili T.G.Adsorption of alcohol-water binary mixture on cation-modified clinoptilolite tuffs of Dzegvi deposit of the Republic of Georgia. Proceedings of the Academy of Sciences of Georgia.Chemistry series. 1991. 17(1): 42.

Eprikashvili L., Kordzakhia T., Andronikashvili T. Zeolites - the unique desiccation agent for organic liquids. (LAP LAMBERT Academic Publishing, 2015).




DOI: https://doi.org/10.15407/hftp13.04.498

Copyright (©) 2022 L. G. Eprikashvili, G. P. Tsintskaladze, T. N. Kordzakhia, M. G. Zautashvili, N. V. Pirtskhalava, M. A. Dzagania, T. M. Sharashenidze

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.