Хімія, фізика та технологія поверхні, 2023, 14 (3), 415-442.

Нові магнієві інтерметаліди – перспективні, надійні, реверсивні накопичувачі водню



DOI: https://doi.org/10.15407/hftp14.03.415

Z. A. Matysina, An. D. Zolotarenko, Ol. D. Zolotarenko, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, Yu. I. Zhirko, E. P. Rudakova, Yu. O. Tarasenko, A. D. Zolotarenko, M. V. Chymbai, O. O. Havryliuk

Анотація


У запропонованій роботі розглянуто водневосорбційні властивості систем магнієвих інтерметалідів зі складною кубічною структурою C15b як перспективних, надійних, реверсивних накопичувачів водню. Розглянуто теплові процеси. Запропоновано статистичну теорію для кубічної структури C15b складу MgRT4Hx, де R = Ce, La, Nd, Pr, Y; T = Co, Ni; 0 ≤ x ≤ 6 при фазових переходах при гідруванні з урахуванням тиску. Встановлено концентраційну залежність максимальних значень параметра порядку та апріорних ймовірностей. Розраховано та розглянуто ізоплети та ізотерми розчинності водню та створено графічну концентраційну залежність температури впорядкування атомів водню в кристалах типу MgCeCo4.

Розглянуто перехід порядок-безлад з урахуванням температури, а також вивчено процес абсорбції-десорбції водню структурою C15b. Виведено рівняння термодинамічної рівноваги із розрахунком вільної енергії, а також розглянуто графічну залежність значення параметра порядку від температури та тиску. Розглянуто температурну залежність розчинності водню у фазах α, β для кристала MgCeCo4. Вивчено конфігураційну теплоємність кристала структури типу MgSnCu4Hx при врахуванні температури та параметра порядку.

Побудовано графік водневої абсорбції-десорбції кристала MgCeCo4Hx. Проведено порівняльний аналіз експериментальних та практичних результатів абсорбції-десорбції водню робочим тілом складу MgRT4Hx.


Ключові слова


магнієві інтерметаліди; структура C15b; водень; сплави; розчинність; статистична теорія; ізоплети; ізотерми; порядок-безлад; абсорбції-десорбції; магній (Mg)

Повний текст:

PDF

Посилання


Baglyuk G.A., Ivasyshyn O.M., Stasyuk O.O., Savvakin D.G. Sintered metals and alloys: The effect of charge component composition on the structure and properties of titanium matrix sintered composites with high-modulus compounds. Powder Metall. Met. Ceram. 2017. 56(1-2): 59. https://doi.org/10.1007/s11106-017-9870-z

Brodnikovskii D.N., Lugovoi N.I., Brodnikovskii N.P., Slyunyaev V.N., Kuz'menko N.N., Vasil'ev A.D., Firstov S.A. Powder metallurgy production of Ti-5.4 wt. % Si Alloy. II. Structure and Strength of the Sintered Material. Powder Metall. Met. Ceram. 2014. 52(9-10): 539. https://doi.org/10.1007/s11106-014-9557-7

Abdullin K.A., Gabdullin M.T., Gritsenko L.V., Ismailov D.V., Kalkozova Z.K., Kumekov S.E., Mukash Z.O., Sazonov A.Y., Terukov E.I. Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma. Semiconductors. 2016. 50(8): 1010. https://doi.org/10.1134/S1063782616080029

Baglyuk G.A., Sosnovskii L.A., Volfman V.I. Effect of carbon content on the properties of sintered steels doped with manganese and copper. Powder Metall. Met. Ceram. 2011. 50(3-4): 189. https://doi.org/10.1007/s11106-011-9317-x

Matvienko Y., Rud A., Polishchuk S., Zagorodniy Y., Rud N., Trachevski V. Effect of graphite additives on solid-state reactions in eutectic Al-Cu powder mixtures during high-energy ball milling. Appl. Nanosci. 2020. 10(8): 2803. https://doi.org/10.1007/s13204-019-01086-2

Baglyuk G.A., Tolochin A.I., Tolochina A.V., Yakovenko R.V., Gripachevckii A.N., Golovkova M.E. Effect of Process Conditions on the Structure and Properties of the Hot-Forged Fe3Al Intermetallic Alloy. Powder Metall. Met. Ceram. 2016. 55(5-6): 297. https://doi.org/10.1007/s11106-016-9805-0

Havryliuk O.O., Semchuk O.Y. Formation of periodic structures on the solid surface under laser irradiation. Ukr. J. Phys. 2017. 62(1): 20. https://doi.org/10.15407/ujpe62.01.0020

Khomenko E.V., Baglyuk G.A., Minakova R.V. Effect of deformation processing on the properties of Cu-50 % Cr composite. Powder Metall. Met. Ceram. 2009. 48(3-4): 211. https://doi.org/10.1007/s11106-009-9108-9

Mostovshchikov A.V., Ilyin A.P., Zabrodina I.K., Root L.O., Ismailov D.V. Measuring the changes in copper nanopowder conductivity during heating as a method for diagnosing its thermal stability. Key Eng. Mater. 2018. 769: 146. https://doi.org/10.4028/www.scientific.net/KEM.769.146

Sizonenko O.N., Baglyuk G.A., Taftai E.I., Zaichenko A.D., Lipyan E.V., Torpakov A.S., Zhdanov A.A., Pristash N.S. Dispersion and carburization of titanium powders by electric discharge. Powder Metall. Met. Ceram. 2013. 52(5-6): 247. https://doi.org/10.1007/s11106-013-9520-z

Baglyuk G.A., Napara-Volgina S.G., Vol'Fman V.I., Mamonova A.A., Pyatachuk S.G. Thermal synthesis of Fe-B 4C powder master alloys. Powder Metall. Met. Ceram. 2009. 48(7-8): 381. https://doi.org/10.1007/s11106-009-9156-1

Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. J. Non-Cryst. Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020

Brodnikovska I., Khomenkova L., Korsunska N., Polishchuk Yu., Brychevskyi M., Brodnikovskyi Ye., Brodnikovskyi D., Polishko I., Vasylyev O. The investigation of 10Sc1CeSZ structure transformation and ionic conductivity. Materials Today: Proceedings. 2022. 50(1): 487. https://doi.org/10.1016/j.matpr.2021.11.299

Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Width of the surface plasmon resonance line in spherical metal nanoparticles. Semicond. Phys. Quantum Electron. Optoelectron. 2020. 23(3): 308.

Baglyuk G.A., Terekhov V.N., Ternovoi Y.F. Structure and properties of powder austenitic die steels. Powder Metall. Met. Ceram. 2006. 45(7-8): 317. https://doi.org/10.1007/s11106-006-0083-0

Brodnikovska I., Korsunska N., Khomenkova L., Polishchuk Yu., Lavoryk S, Brychevskyi M., Brodnikovskyi Y., Vasylyev O. Grains, grain boundaries and total ionic conductivity of 10Sc1CeSZ and 8YSZ solid electrolytes affected by crystalline structure and dopant content. Materials Today: Proceedings. 2019. 6(2): 79. https://doi.org/10.1016/j.matpr.2018.10.078

Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids and Interfaces. 2019. 3(1): 34. https://doi.org/10.3390/colloids3010034

Tolochyn O.I., Baglyuk G.A., Tolochyna O.V., Evych Y.I., Podrezov Y.M., Molchanovska H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Materials Science. 2021. 56(4): 499. https://doi.org/10.1007/s11003-021-00456-y

Semchuk O.Y., Biliuk A.A., Havryliuk O.O. The Kinetic Theory of the Width of Surface Plasmon Resonance Line in Metal Nanoparticles. Springer Proceedings in Physics. 2021. 264: 3. https://doi.org/10.1016/j.apsadv.2021.100057

Brodnikovskii D.N., Lugovoi N.I., Brodnikovskii N.P., Slyunyaev V.N., Kulak L.D., Vasil'ev A.D., Firstov S.A. Powder metallurgy production of Ti-5.4 wt. % Si alloy. I. Simulating the formation of powder particles by centrifugal atomization. Powder Metall. Met. Ceram. 2013. 52: 409. https://doi.org/10.1007/s11106-013-9541-7

Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 556. https://doi.org/10.15407/hftp13.02.190

Ilyin A.P., Mostovshchikov A.V., Root L.O., Zmanovskiy S.V., Ismailov D.V., Ruzieva G.U. Effect of beta-radiation exposure on the parameters of aluminum micropowders activity. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2019. 330(8): 87.

Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Bo W., Bratus V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Appl. Surf. Sci. 2018. 434: 142. https://doi.org/10.1016/j.apsusc.2017.10.029

Brodnikovska I., Brychevskyia M., Brodnikovskyi Y., Brodnikovskyi D., Vasylyev O., Smirnova A. Joint impedance spectroscopy and fractography data analysis of ceria doped scandia stabilized zirconia solid electrolyte modified by powder types and sintering temperature. French-Ukrainian Journal of Chemistry. 2018. 6(1): 128. https://doi.org/10.17721/fujcV6I1P128-141

Baglyuk G.A., Poznyak L.A. The sintering of powder metallurgy high-speed steel with activating additions. Powder Metall. Met. Ceram. 2002. 41(7-8): 366. https://doi.org/10.1023/A:1021113025628

Brodnikovsky D.N., Golovash A.V., Tkachenko S.V., Okun I.Yu., Kuz'menko N.N., Firstov S.A. Influence of rigid particles of silicide on character of deformation of alloys on the base of a titanium at the high temperatures. Metallofizika i noveishie tekhnologii. 2006. 28: 165.

Baglyuk G.A., Poznyak L.A. Sintered wear-resistant iron-based materials. I. Materials fabricated by sintering and impregnation. Poroshkovaya Metallurgiya. 2001. 1-2: 44.

Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. In: NATO Security through Science Series A: Chemistry and Biology. (Springer, Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 2007) P. 199. https://doi.org/10.1007/978-1-4020-5514-0_25

Zaginaichenko S.Y., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9

Boguslavskii L.Z., Rud' A.D., Kir'yan I.M., Nazarova N.S., Vinnichenko D.V. Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing. Surf. Eng. Appl. Electrochem. 2015. 51(2): 105. https://doi.org/10.3103/S1068375515020027

Matysina Z. A., Zolotarenko Ol. D., Ualkhanova M., Rudakova O. P., Akhanova N. Y., Zolotarenko An. D., Shchur D. V., Gabdullin M. T., Gavrylyuk N. A., Zolotarenko O. D., Chymbai M. V., Zagorulko I. V. Electric Arc Methods to Synthesize Carbon Nanostructures. Progress in Physics of Metals. 2022. 23(3): 528.

Yakymchuk O.M., Perepelytsina O.M., Rud A.D., Kirian I.M., Sydorenko M.V. Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells. Phys. Status Solidi A. 2014. 211(12): 2778. https://doi.org/10.1002/pssa.201431358

Kartel N.T., Gerasimenko N.V., Tsyba N.N., Nikolaichuk A.D., Kovtun G.A. Synthesis and study of carbon sorbent prepared from polyethylene terephthalate. Russ. J. Appl. Chem. 2001. 74(10): 1765. https://doi.org/10.1023/A:1014894211046

Zolotarenko Ol.D, Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An. D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 209. [in Ukrainian].

Oreshkin V.I., Chaikovskii S.A., Labetskaya N.A., Ivanov Y.F., Khishchenko K.V., Levashov P.R., Kuskova N.I., Rud' A.D. Phase transformations of carbon under extreme energy action. Tech. Phys. 2012. 57(2): 198. https://doi.org/10.1134/S106378421202017X

Rud' A.D., Lakhnik A.M., Mikhailova S.S., Karban O.V., Surnin D.V., Gilmutdinov F.Z. Structure of Mg-C nanocomposites produced by mechano-chemical synthesis. J. Alloys Compd. 2011. 509(2): S592. https://doi.org/10.1016/j.jallcom.2010.10.155

Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. The forming peculiarities of C60 molecule. NATO Science for Peace and Security Series C: Environmental Security. 2008. PartF2: 53.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Yu., Zolotarenko An.D., Shchur D.V., Matysina Z.A., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Comparative Analysis of Products of the Fullerenes' and Carbon-Nanostructures' Synthesis Using the SIGE and FGDG-7 Grades of Graphite. Nanosistemi, Nanomateriali, Nanotehnologii. 2022. 20(3): 725. https://doi.org/10.15407/nnn.20.03.725

Gun'ko V.M., Turov V.V., Zarko V.I., Prykhod'ko G.P., Krupska T.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chem. Phys. 2015. 459. 172. https://doi.org/10.1016/j.chemphys.2015.08.016

Nishchenko M.M., Likhtorovich S.P., Dubovoy A.G., Rashevskaya T.A. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon. 2003. 41(7): 1381. https://doi.org/10.1016/S0008-6223(03)00065-4

Lad'yanov V.I., Nikonova R.M., Larionova N.S., Aksenova V.V., Mukhgalin V.V., Rud' A.D. Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation. Phys. Solid State. 2013. 55(6): 1319. https://doi.org/10.1134/S1063783413060206

Matysina Z. A., Zolotarenko Ol.D., Rudakova O. P., Akhanova N. Y., Pomytkin A. P., Zolotarenko An. D., Shchur D. V., Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Zolotarenko A. D., Chymbai M. V., Zagorulko I. V. Iron in Endometallofullerenes. Progress in Physics of Metals. 2022. 23(3): 510.

Kartel M.T., Voitko K.V., Grebelna Y.V., Zhuravskyi S.V., Ivanenko K.O., Kulyk T.V., Makhno S.M., Sementsov Yu.I. Changes in the structure and properties of graphene oxide surfaces during reduction and modification. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2):179. https://doi.org/10.15407/hftp13.02.179

Rud A.D., Kiryan I.M. Quantitative analysis of the local atomic structure in disordered carbon. J. Non-Cryst. Solids. 2014. 386: 1. https://doi.org/10.1016/j.jnoncrysol.2013.11.010

Sementsov Yu.I., Cherniuk O.A., Zhuravskyi S.V., Bo W., Voitko K.V., Bakalinska O.M., Kartel M.T. Synthesis and catalytic properties of nitrogen-containing carbon nanotubes. Himia, Fizika ta Tehnologia Poverhni. 2021. 12(2): 135. https://doi.org/10.15407/hftp12.02.135

Barany S., Kartel' N., Meszaros R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants. Colloid Journal. 2014. 76(5): 509. https://doi.org/10.1134/S1061933X14050020

Ushakova L.M., Ivanenko K.I., Sigareva N.V., Terets M.I., Kartel M.T., Sementsov Yu.I. Influence of nanofiller on the structure and properties of macromolecular compounds. Physics and Chemistry of Solid State. 2022. 23(2): 394. https://doi.org/10.15330/pcss.23.2.394-400

Sementsov Yu., Prikhod'ko G., Kartel M., Tsebrenko M., Aleksyeyeva T., Ulyanchychi N. Carbon nanotubes filled composite materials. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 183. https://doi.org/10.1007/978-94-007-0899-0_16

Harea E., Stoček R., Storozhuk L., Sementsov Y., Kartel N. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers. Appl. Nanosci. 2019. 9(5): 899. https://doi.org/10.1007/s13204-018-0797-6

Gun'ko V.M., Turov V.V., Protsak I., Krupska T.V., Pakhlov E.M., Zhang D. Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas. Colloid Interface Sci. Commun. 2020. 35: 100251. https://doi.org/10.1016/j.colcom.2020.100251

Zolotarenko O.D., Rudakova E.P., Zolotarenko A.D., Akhanova N.Y., Ualkhanova M.N., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Tarasenko Yu.O., Havryliuk O.O. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(3): 259.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina M., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallofizika i Noveishie Tekhnologii. 2022. 44(3): 343.

Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Myronenko T.V., Zagorulko I.V., Zolotarenko A.D., Havryliuk O.O. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(4): 415.

Zolotarenko Ol. D., Rudakova E. P., Akhanova N. Y., Zolotarenko An. D., D. V. Shchur, Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Chymbai M. V., Tarasenko Yu. O., Zagorulko I. V., Zolotarenko A. D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallofizika i Noveishie Tekhnologii. 2021. 43(10): 1417.

Pylypova O., Havryliuk O., Antonin S., Evtukh A., Skryshevsky V., Ivanov I., Shmahlii S. Influence of nanostructure geometry on light trapping in solar cells. Appl. Nanosci. 2022. 12(3): 769. https://doi.org/10.1007/s13204-021-01699-6

Semchuk O.Y., Biliuk A.A., Havryliuk O.O., Biliuk A.I. Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance. Appl. Surf. Sci. Adv. 2021. 3: 100057. https://doi.org/10.1016/j.apsadv.2021.100057

Havryliuk O.O., Evtukh A.A., Pylypova O.V., Semchuk O.Y., Ivanov I.I., Zabolotnyi V.F. Plasmonic enhancement of light to improve the parameters of solar cells. Appl. Nanosci. 2020. 10(12): 4759. https://doi.org/10.1007/s13204-020-01299-w

Stavitskaya S.S., Mironyuk T.I., Kartel' N.T., Strelko V.V. Sorption characteristics of "food fibers" in secondary products of processing of vegetable raw materials. Russ. J. Appl. Chem. 2021. 74(4): 592. https://doi.org/10.1023/A:1012706531317

Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chem. Phys. Lett. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039

Zakutevskii O.I., Psareva T.S., Strelko V.V., Kartel' N.T. Sorption of U(VI) from aqueous solutions with carbon sorbents. Radiochemistry. 2007. 49(1): 67. https://doi.org/10.1134/S1066362207010110

Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsiloxane/fumed silica blends. Materials. 2019. 12(15): 2409. https://doi.org/10.3390/ma12152409

Kartel M., Galysh V. New composite sorbents for caesium and strontium ions sorption. Chemistry Journal of Moldova. 2017. 12(1): 37. https://doi.org/10.19261/cjm.2017.401

Gun'ko V.M., Turov V.V., Protsak I.S., Krupska T.V., Pakhlov E.M., Tsapko M.D. Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas. Colloids Surf. A. 2019. 570. 471. https://doi.org/10.1016/j.colsurfa.2019.03.056

Galysh V., Sevastyanova O., Kartel M., Lindström M.E., Gornikov Y. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. J. Therm. Anal. Calorim. 2017. 128(2): 1019. https://doi.org/10.1007/s10973-016-5984-7

Turov V.V., Gun'ko V.M., Krupska T.V., Borysenko M.V., Kartel M.T. Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends. J. Colloid Interface Sci. 2021. 588: 70. https://doi.org/10.1016/j.jcis.2020.12.065

Gabdullin M.T., Khamitova K.K., Ismailov D.V., Sultangazina M.N., Kerimbekov D.S., Yegemova S.S., Chernoshtan A., Schur D.V. Use of nanostructured materials for the sorption of heavy metals ions. IOP Conference Series: Materials Science and Engineering. 2019. 511(1): 12044. https://doi.org/10.1088/1757-899X/511/1/012044

Sementsov Yu.I., Prikhod'ko G.P., Melezhik A.V., Aleksyeyeva T.A., Kartel M.T. Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. In: Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. 2010: 347. https://doi.org/10.1007/978-90-481-2309-4_27

Gun'ko V.M., Lupascu T., Krupska T.V., Golovan A.P., Pakhlov E.M., Turov V.V. Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas. Colloids Surf. A. 2017. 531: 9. https://doi.org/10.1016/j.colsurfa.2017.07.084

Khamitova K.K., Kayupov B.A., Yegemova S.S., Gabdullin M.T., Abdullin Kh.A., Ismailov D.V., Kerimbekov D.S. The use of fullerenes as a biologically active molecule. Int. J. Nanotechnol. 2019. 16(1-3): 100. https://doi.org/10.1504/IJNT.2019.102396

Gun'ko V.M., Turov V.V., Krupska T.V., Tsapko M.D. Interactions of human serum albumin with doxorubicin in different media. Chem. Phys. 2017. 483-484: 26. https://doi.org/10.1016/j.chemphys.2016.11.007

Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102

Krupska T.V., Turova A.A., Un'Ko V.M., Turov V.V. Influence of highly dispersed materials on physiological activity of yeast cells. Biopolymers and Cell. 2009. 25(4): 290. https://doi.org/10.7124/bc.0007E8

Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. In: NATO Security through Science Series A: Chemistry and Biology. 2007: 365. https://doi.org/10.1007/978-1-4020-5514-0_47

Zaginaichenko S., Nejat Veziroglu T. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. Int. J. Hydrogen Energy. 2008. 33(13): 3330. https://doi.org/10.1016/j.ijhydene.2008.03.064

Zaginaichenko S.Yu., Veziroglu T.N., Lototsky M.V., Bogolepov V.A., Savenko A.F. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. Int. J. Hydrogen Energy. 2016. 41(1): 401. https://doi.org/10.1016/j.ijhydene.2015.08.087

Lakhnik A.M., Kirian I.M., Rud A.D. The Mg/MAX-phase composite for hydrogen storage. Int. J. Hydrogen Energy. 2022. 47(11): 7274. https://doi.org/10.1016/j.ijhydene.2021.02.081

Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. Hydrogenation of fullerite C60 in gaseous phase. In: NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7

Tkachenko S., Brodnikovskyi D., Cizek J. Komarov P., Brodnikovskyi Ye., Tymoshenko Ya., Csaki S., Pinchuk M., Vasylyev O., Čelko L., Gadzyra M., Chraska T. Novel Ti-Si-C composites for SOFC interconnect materials: Produc-tion optimization. Ceram. Int. 2022. 48(19(A)): 27785. https://doi.org/10.1016/j.ceramint.2022.06.081

Podhurska V., Brodnikovskyi D., Vasyliv B., Gadzyra M., Tkachenko S., Čelko L., Ostash O., Brodnikovska I., Brodnikovskyi Ye., Vasylyev O. Ti-Si-C in-situ composite as a potencial material for lightweight SOFC interconnects. Promising materials and processes in applied electrochemistry. (Kyiv: KNUTD, 2020).

Brodnikovskyi Y., McDonald N., Polishko I., Brodnikovskyi D., Brodnikovska I., Brychevskyi M., Kovalenko L., Vasylyev O., Belous A., Steinberger-Wilckens R. Properties of 10Sc1CeSZ-3.5 YSZ (33-, 40-, 50-wt. %) composite ceramics for SOFC application. Materials Today: Proceedings. 2019. 6: 26. https://doi.org/10.1016/j.matpr.2018.10.071

Polishko I., Ivanchenko S., Horda R., Brodnikovskyi Ye., Lysunenko N., Kovalenko L. Tape casted SOFC based on Ukrainian 8YSZ powder. Materials Today: Proceedings. 2019. 6(2): 237. https://doi.org/10.1016/j.matpr.2018.10.100

Bogolepov V.A., Veziroglu A., Zaginaichenko S.Y., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. Int. J. Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011

Shchur D.V., Zaginaichenko S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russ. Phys. J. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7

Matysina Z.A. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen concentration. Russ. Phys. J. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874

Trefilov V.I., Pishuk V.K., Zaginaichenko S.Yu., Choba A.V., Nagornaya N.R. Solar furnaces for scientific and technological investigation. Renewable energy.1999. 16(1-4): 757. https://doi.org/10.1016/S0960-1481(98)00273-0

Lyashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. Int. J. Hydrogen Energy. 1995. 20(5): 405. https://doi.org/10.1016/0360-3199(94)00077-D

Lavrenko V.A., Adejev V.M., Kirjakova I.E. Studies of the hydride formation mechanism in metals. Int. J. Hydrogen Energy. 1994. 19(3): 265. https://doi.org/10.1016/0360-3199(94)90096-5

Matysina Z.A., Gavrylyuk N.A., Kartel M., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Ramazanov T.S., Gabdullin M.T., Zolotarenko A.D., Zolotarenko A.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069

Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids. 1995. 56(1): 9. https://doi.org/10.1016/0022-3697(94)00106-5

Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Kolbasov G.Ya., Danilov M.O. Atomic structure and hydrogen storage properties of amorphous-quasicrystalline Zr-Cu-Ni-Al melt-spun ribbons. J. Non-Cryst. Solids. 2007. 353(32-40): 3434. https://doi.org/10.1016/j.jnoncrysol.2007.05.095

Matysina Z.A., Zaginaichenko S.Yu. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X

Zaginaichenko S.Yu., Matysina Z.A., Smityukh I., Pishuk V.K. Hydrogen in lanthan-nickel storage alloys. J. Alloys Compounds. 2002. 330-332: 70. https://doi.org/10.1016/S0925-8388(01)01661-9

Lytvynenko Yu.M. Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1-4): 753. https://doi.org/10.1016/S0960-1481(98)00272-9

Matysina Z.A., Zaginaichenko S.Y. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides. Russ. Phys. J. 2016. 59(2): 177. https://doi.org/10.1007/s11182-016-0757-0

Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Perekos A.E., Kolbasov G.Ya., Danilov M.O. Peculiarities of structural state and hydrogen storage properties of Ti-Zr-Ni based intermetallic compounds. J. Alloys Compd. 2005. 404-406: 515. https://doi.org/10.1016/j.jallcom.2004.12.174

Zaginaichenko S.Y., Matysina Z.A., Teslenko L.O., Veziroglu A. The structural vacancies in palladium hydride. Phase diagram. Int. J. Hydrogen Energy. 2011. 36(1): 1152. https://doi.org/10.1016/j.ijhydene.2010.06.088

Zaginaichenko S.Y., Zaritskii D.A., Matysina Z.A., Veziroglu T.N., Kopylova L.I. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. Int. J. Hydrogen Energy. 2015. 40(24): 7644. https://doi.org/10.1016/j.ijhydene.2015.01.089

Matysina Z.A., Zaginaichenko S.Y. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Phys. Met. Metall. 2013. 114(4): 308. https://doi.org/10.1134/S0031918X13010079

Tikhotskii S.A., Fokin I.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya. Physics of the Solid Earth. 2011. 47(4): 327. https://doi.org/10.1134/S1069351311030062

Aono K., Orimo S., Fujii H. Structural and hydriding properties of MgYNi4: A new intermetallic compound with C15b-type Laves phase structure. J. Alloys Compd. 2000. 309: L1. https://doi.org/10.1016/S0925-8388(00)01065-3

Kohno T., Yoshida H., Kawashima F., Inaba T., Sakai I., Yamamoto M., Kanda M. Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J. Alloys Compd. 2000. 311: L5. https://doi.org/10.1016/S0925-8388(00)01119-1

Hisa M., Barry J.C., Dunlop G.L. New type of precipitate in Mg-rare-earth alloys. Philosophical Magazine A. 2002. 82(3): 495. https://doi.org/10.1080/01418610208239612

Kadir K., Noreus D., Yamashita I. Structural determination of AMgNi4 (where A = Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure. J. Alloys Compd. 2002. 345(1-2): 140. https://doi.org/10.1016/S0925-8388(02)00323-7

Hanada N., Orimo S., Fujii H. Hydriding properties of ordered-/disordered-Mg-based ternary Laves phase structures. J. Alloys Compd. 2003. 356-357: 429. https://doi.org/10.1016/S0925-8388(03)00227-5

Guénée L., Favre-Nicolin V., Yvon K. Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg. J. Alloys Compd. 2003. 348: 129. https://doi.org/10.1016/S0925-8388(02)00797-1

Wang Zh., Zhou Hu.-yi., Gu Z., Cheng G., Yu A. Preparation of LaMgNi4 alloy and its electrode properties. J. Alloys Compd. 2004. 377: L7. https://doi.org/10.1016/j.jallcom.2004.01.048

Jurczyk M., Smardz L., Szajek A. Nanocrystalline materials for Ni-MNbatteries. Materials Science and Engineering: B. 2004. 108(1-2): 67. https://doi.org/10.1016/j.mseb.2003.10.050

Liao B., Lei Q., Chen L.X., Lu G.L., Pan H.G., Wang Q.D. Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3-xNi9 (x = 1.6-2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries. J. Power Sources. 2004. 129: 358. https://doi.org/10.1016/j.jpowsour.2003.11.044

Wang L.B., Wang J.B., Yuan H.T., Wang Y.J., Li Q.D. An electrochemical investigation of Mg1-xAlxNi (0 ≤ x ≤ 0.6) hydrogen storage alloys. J. Alloys Compd. 2004. 385(1-2): 304. https://doi.org/10.1016/j.jallcom.2004.04.117

Liu Y., Pan H., Gao M., Lei Y., Wang Q. Degradation mechanism of the La-Mg-Ni-based metal hydride electrode La0.7Mg0.3Ni3.4Mn0.1. J. Electrochem. Soc. 2005. 152: A1089. https://doi.org/10.1149/1.1904943

Xie Z., Fu A., Chen Y., Pan F., Ding P. Effect of Al addition on microstructure and hydrogen diffusion capability of Mg2Ni alloy. J. Functional Mater. 2006. 37(4): 1.

Tuncel S., Hoffmann R.D., Heying B. New Intermetallic Compounds Nd4Co2Mg3 and Sm4Co2Mg3 an Intergrowth of AIB2 and CsCI Related Slabs. Z. Anorg. Allg. Chem. 2006. 632: 2017. https://doi.org/10.1002/chin.200649003

Zhang F., Luo Y., Deng A., Tang Zh., Kang L., Chen J. A study on structure and electrochemical properties of (La,Ce,Pr,Nd)2MgNi9 hydrogen storage electrode alloys. Electrochem. Acta. 2006. 52: 24. https://doi.org/10.1016/j.electacta.2006.03.083

Ozaki T., Kanemoto M., Kakeya T., Kitano Y., Kuzuhara M., Watada M., Tanase S., Sakai T. Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys. J. Alloys Compd. 2007. 446-447: 620. https://doi.org/10.1016/j.jallcom.2007.03.059

Fu J., Chen Y. Microstructure and electrochemical properties of Mg2Ni substituted by Al, Ti. Mater. Sci. Forum. 2007. 546-549: 455. https://doi.org/10.4028/www.scientific.net/MSF.546-549.455

Tuncel S., Rodewald U.Ch., Matar S.F. New intermetallic compounds RE4Co2Mg3 (RE = Pr, Cg, Tb, Dy) - Syntheses, Structure, and Chemical Bonding. Z. Naturforsch. 2007. 62b: 162. https://doi.org/10.1515/znb-2007-0204

De Negri S., Giovannini M., Saccone A. Phase relationships of the La-Ni-Mg system at 500°C from 66.7 to 100 at. % Ni. J. Alloys Compd. 2007. 439: 109. https://doi.org/10.1016/j.jallcom.2006.08.236

Denys R.V., Zavaliy I.Yu., Paul-Boncour V., Beresovets V.V., Koval'chuk I.V. New Mg-M-Ni (M = Mn, Ti, Al) alloys as efficient hydrogen storage materials. In: Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. (2007, Sudak, Ukraine). P. 332.

Bobet J.-L., Lesportes P., Roquefere J.-G., Chevalier B., Asano K., Sakaki K., Akiba E. A preliminary study of some "pseudo-AB2" compounds: RENi4Mg with Re=La, Ce and Gd. Structural and hydrogen sorption properties. Int. J. Hydrogen Energy. 2007. 32: 2422. https://doi.org/10.1016/j.ijhydene.2006.11.031

Chotard J.-N., Sheptyakov D., Yvon K. Hydrogen induced site depopulation in the LaMgNi4-hydrogen system. Z. Kristallogr. 2008. 223: 690. https://doi.org/10.1524/zkri.2008.1124

Okonska I., Nowak M., Jankowska E., Jurczyk M. Hydrogen storage by Mg-based nanomaterials. Rev. Adv. Mater. Sci. 2008. 18: 627.

Jurczyk M., Smardz L., Okonska I., Jankowska E., Novak M., Smardz K. Nanoscale Mg-based materials for hydrogen storage. Int. J. Hydrogen Energy. 2008. 33(1): 374. https://doi.org/10.1016/j.ijhydene.2007.07.022

Dobrovolsky V.D., Ershova O.G., Solonin Yu.M., Denys R.V., Zavaliy I.Yu. Thermal stability and H-desorption properties of Mg3MnNi2Hx prepared by reactive mechanical alloying of powders Mg, Mn, Ni in H2-atmosphere. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems. Netherlands. 2008. P. 467. https://doi.org/10.1007/978-1-4020-8898-8_59

Chotard J.N., Sheptyakov D., Yuon K. Hydrogen induced site depopulation in the LaMgNi4 hydrogen system. Z. Kristallorg. 2008. 223: 690. https://doi.org/10.1524/zkri.2008.1124

Wang Z.M., Ni C., Zhou H., Yao Q. Structural characterization of REMgNi4 type compounds. Mater. Characterization. 2008. 59(4): 422. https://doi.org/10.1016/j.matchar.2007.02.018

Lin C.Y. Effect of Mg3MnNi2 on the electrochemical and hydrogenation properties of Mg2Ni alloy: Master's thesis (Jhongli , Taiwan. R.O.C., 2008)

Xie Z.M., Pan F.S., Xiang Y.F., Chen Y. Synergistic effects of Al and Cr addition on microstructure of Mg2Ni hydrogen storage alloy. Mat. Science Forum. 2009. 610-613: 960. https://doi.org/10.4028/www.scientific.net/MSF.610-613.960

Parente A., Nale A., Catti M., Kopnin E., Caracino P. Hydrogenation properties of Mg2AlNi2 and mechanical alloying in the Mg-Al-Ni system. J. Alloys Compd. 2009. 477(1-2): 420. https://doi.org/10.1016/j.jallcom.2008.10.023

Denys R.V., Riabov A.B., Maehlen J.P., Lototsky M.V., Solberg J.K., Yartys V.A. In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg-Mm-Ni after reactive ball milling in hydrogen. Acta Mater. 2009. 57(13): 3989. https://doi.org/10.1016/j.actamat.2009.05.004

Férey A., Cuevas F., Latroche M., Knosp B., Bernard P. Elaboration and characterization of magnesium-substituted La5Ni19 hydride forming alloys as active materials for negative electrode in Ni-MH battery. Electrochim. Acta. 2009. 54: 1710. https://doi.org/10.1016/j.electacta.2008.09.069

Roquefere J.G., Matar S. F., Bobet J.L., Huot J. X-ray/neutron diffraction studies and ab initio electronic structure of CeMgNi4 and its hydride. Solid State Sci. 2009. 11(1): 1971. https://doi.org/10.1016/j.solidstatesciences.2009.07.003

Denis R.V., Berezovets V.V., Kovalchuk I.V., Paul-Boncourt V., Cherni R., Zavaliy I. Yu. Structure and hydrogen sorption properties of new compounds and alloys based on magnesium. Hydrogen materials science and chemistry of carbon nanomaterials. 2009. P. 40. [in Ukrainian].

Tuncel S., Roquefere J.G., Stan C., Louis B.J., Chevalier B., Gaudin E., Hoffmann R.-D., Rodewald U.Ch., Pöttgen R. Rare earth metal rich magnesium compounds RE4NiMg (Re = Y, Pr-Nd, Sm, Gd-Tm, Lu) - Synthesis, structure, and hydrogenation behavior. J. Solid State Chem. 2009. 182(2): 229. https://doi.org/10.1016/j.jssc.2008.10.026

Couillaud S., Linsinger S., Duée C., Rougier A., Chevalier B., Pöttgen R., Bobet J.L. Hydrogenation behavior of the solid solutions RE4NiMg1-xAlx and RE4-yNiMg1+y with RE = Gd and Y. Intermetallics. 2010. 18(6): 1115. https://doi.org/10.1016/j.intermet.2010.02.007

Huang L.W., Elkedim O., Jarzebski M., Hamzaoui R., Jurczyk M. Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1-xMnx(x = 0, 0.125, 0.25, 0.375) alloys prepared by mechanical alloying. Int. J. Hydrogen Energy. 2010. 35(13): 6794. https://doi.org/10.1016/j.ijhydene.2010.04.023

Hsu F.K., Lin C.K., Lee S.L., Bor H.Y. Effect of Mg3MnNi2 on the electrochemical characteristics of Mg2Ni electrode alloy. J. Power Sources. 2010. 195(1): 374. https://doi.org/10.1016/j.jpowsour.2009.07.020

Denys R.V., Zavaliy I.Yu., Paul-Boncour V., Berezovets V.V., Koval'chuk I.V., Riabov A.B. New Mg-Mn-Ni alloys as efficient hydrogen storage materials. Intermetallics. 2010. 18(8): 1579. https://doi.org/10.1016/j.intermet.2010.04.011

Hsu F.K., Hsu C.W., Chang J.K., Lin C.K., Lee S.L., Jiang C.E. Structure and hydrogen storage properties of Mg2Cu1-xNix(x = 0 - 1) alloys. Int. J. Hydrogen Energy. 2010. 35(24): 13247. https://doi.org/10.1016/j.ijhydene.2010.09.034

Ölmez R., Ģakmak G., Öztürk T. Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Nb-Ti. Int. J. Hydrogen Energy. 2010. 35(21): 11957. https://doi.org/10.1016/j.ijhydene.2010.08.045

Denis R.V., Berezovets V.V., Zavaliy I.Yu. Magnesium-based sorbent materials. In: Fundamental problems of water energy. (Kyiv: Vidavnitstvo "KIM", 2010). P. 245. [in Ukrainian].

Ershova O.G., Dobrovolsky V.D., Khizhun O.Yu., Solonin Yu.M. Mechanochemical synthesis of materials - sorbents in water. In: Fundamental problems of water energy. (Kyiv: Vidavnitstvo "KIM", 2010). P. 218. [in Ukrainian].

Denys R.V., Poletaev A.A., Solbeerg J.K., Tarasov B.P., Yartys V.A. LaMg11 with a giant unit cell synthesized by hydrogen metallurgy: Crystal structure and hydrogenation behavior. Acta Materialia. 2010. 58(7): 2510. https://doi.org/10.1016/j.actamat.2009.12.037

Wang J.-W., Yang F., Fan T.W., Tang B.-Yu. Peng Li.-M., Ding W.-J. Theoretical investigation of new type of ternary magnesium alloys AMgNi4 (A = Y, La, Ce, Pr and Nd). Physica B. 2011. 406(6-7): 1330. https://doi.org/10.1016/j.physb.2011.01.028

Liu Y., Cao Y., Huang L., Gao M., Pan H. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J. Alloys Compd. 2011. 509(3): 675. https://doi.org/10.1016/j.jallcom.2010.08.157

Linsinger S., Eul M., Schwickert Ch., Decourt R., Chevalier B., Rodewald U.Ch., Bobet J.-L., Pöttgen R. Structure, homogeneity ranges, magnetic, and electrical properties of the ordered Laves phases RENI4Mg with MgCu4Sn type structure. Intermetallics. 2011. 19(10): 1579. https://doi.org/10.1016/j.intermet.2011.06.002

Huang L.W., Elkedim O., Hamzaoui R. First principles investigation of the substitutional doping of Mn in Mg2Ni phase and the electronic structure of Mg3MnNi2. J. Alloys Compd. 2011. 509(1): S328. https://doi.org/10.1016/j.jallcom.2010.08.129

Wang B., Zhu L. Electronic structure and bonding characteristic of LaMgNi4H4. Adv. Mater. Res. 2011. 160-162: 876. https://doi.org/10.4028/www.scientific.net/AMR.160-162.876

Zhang J., Villeroy B., Knosp B., Bernard P., Latroche M. Structural and chemical analyses of the new ternary La5MgNi24 phase synthesized by spark plasma sintering and used as negative electrode material for Ni-MH batteries. Int. J. Hydrogen Energy. 2012. 37(6): 5225. https://doi.org/10.1016/j.ijhydene.2011.12.096

Gao J., Yan X.L., Zhao Z.Y., Chai Y.J., Hou D.L. Effect of annealed treatment on microstructure and cyclic stability for La-Mg-Ni hydrogen storage alloys. J. Power Sources. 2012. 209: 257. https://doi.org/10.1016/j.jpowsour.2012.02.088

Iwase K., Terashita N., Mori K., Tsunokake Sh., Ishigaki T. Crystal structure and cyclic properties of hydrogen absorption-desorption in Pr2MgNi9. Int. J. Hydrogen Energy. 2012. 37(23): 18095. https://doi.org/10.1016/j.ijhydene.2012.09.034

Terastita N., Sakaki K., Nakamura Y., Akiba E. Hydrogenation properties of ternary intermetallics compounds Mg2-xPrxNi4. Mater. Trans. 2012. 53(3): 513. https://doi.org/10.2320/matertrans.M2011334

Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Sorption properties of hydrogen in magnesium intermetallic compounds. Metallophysics and latest technologies. 2012. 34(7): 883.

Denys R.V., Riabov A.B., Černy R., Kovalchuk I.V., Zavaliy I.Yu. New CeMgCo4 and Ce2MgCo9 compounds: Hydrogenation properties and crystal structure of hydrides. J. Solid State Chem. 2012. 187: 1. https://doi.org/10.1016/j.jssc.2011.10.040

Matysina Z.A., Botsva N.P., Elina E.V., Devyatkina M.E. Investigation of hydrogen sorption isotherms in the system of magnesium intermetallic compounds. Bulletin of the Dnepropetrovsk National University. Olesya Gonchar. Series "Physics. Radioelectronics. 2013. 34: 5.

Tan J., Zeng X., Zou J., Wu X., Ding W. Preparation of LaMgNi4-xCox alloys and hydrogen storage properties. Trans. Nonferrous Met. Soc. China. 2013. 23(8): 2307. https://doi.org/10.1016/S1003-6326(13)62733-8

Hu W.K., Denys R.V., Nwakwuo C.C., Holm T., Maehlen J.P., Solberg J.K., Yartys V.A. Annealing effect on phase composition and electrochemical properties of the Co-free La2MgNi9 anode for Ni-metal hydride batteries. Electrochem. Acta. 2013. 96: 27. https://doi.org/10.1016/j.electacta.2013.02.064

Zhang L., Han Sh., Li Y., Liu J., Zhang J., Wang J., Yang Sh. Formation mechanism, phase structure and electrochemical properties of the La-Mg-Ni-based multiphase alloys by powder sintering LaNi5 and LaMgNi4. Int. J. Hydrogen Energy. 2013. 38(25): 10431. https://doi.org/10.1016/j.ijhydene.2013.05.129

Latroche M., Cuevas F., Hu W.-K., Sheptyakov D., Denys R.V., Yartys V.A. Mechanistic and kinetic study of the electrochemical charge and discharge of La2MgNi9 by in situ powder neutron diffraction. J. Phys. Chem. C. 2014. 118(23): 12162. https://doi.org/10.1021/jp503226r

Li R., Shen J., Tian F. A theoretical study of the thermodynamic properties of YMgX4 (X = Co, Ni, Cu) compounds. AIP Adv. 2014. 4(9): 097123-3. https://doi.org/10.1063/1.4896139

Shtender V.V., Denis R.V., Paul-Boncour V., Riabov A.B., Zavaliy I.Yu. Hydrogenation properties and crystal structure of YMgT4 (T = Co, Ni, Cu) compounds. J. Alloys Compd. 2014. 603: 7. https://doi.org/10.1016/j.jallcom.2014.03.030

Shtender V.V., Denis R.V., Paul-Boncour V., Verbovytskyy Yu.V., Zavaliy I.Yu. Effect of Co substitution on hydrogenation and magnetic properties of NbMgNi4 alloy. J. Alloy Compd. 2015. 639: 526. https://doi.org/10.1016/j.jallcom.2015.03.187

Song W., Li J., Zhang T., Hou X., Kou H. Formation mechanism of tetrahedral MgYNi4 phase. Mater. Lett. 2015. 145: 193. https://doi.org/10.1016/j.matlet.2015.01.103

Zhang Y., Yuan Z., Yang T., Qi Y., Zhao D. Effect of mechanical grinding on the electrochemical hydrogen storage properties of Mg-Ni-Y alloy. J. Solid State Electrochem. 2015. 19(4): 1187. https://doi.org/10.1007/s10008-014-2736-0

Shtender V., Paul-Boncourt V., Denis R., Zavaliy I. Synthesis and hydrogenation of alloys R4Mg3Co2 (R = Nd, Tb). Bulletin of Lviv University. The series is chemical. 2015. 1(56): 138.

Shtender V.V., Denis R.V., Paul-Boncour v., Zavaliy I.Yu., Verbovytskyy Yu.V., Taylor D.D. Crystal structure, hydrogen absorption-desorption behavior and magnetic properties of the Nd3-xMgxCo9 alloys. J. Alloys Compd. 2017. 695: 1426. https://doi.org/10.1016/j.jallcom.2016.10.268

Smirnov A.A. Molecular-kinetic theory of metals. (Moscow: Nauka, 1966). [in Russian].

Smirnov A.A. Theory of interstitial alloys. (Moscow: Science, 1979). [in Russian].

Matysina Z.A., Zaginaichenko S.Yu., Shchur D.V. Solubility of impurities in metals, alloys, intermetallics, fullerites. (Dnepropetrovsk: Science and education, 2006). [in Russian].

Matysina Z.A., Zaginaichenko S.Yu., Shchur D.V., Viziroglu A., Viziroglu T.N., Zolotarenko A.D., Zolotarenko An.D. Hydrogen in crystals. (Kyiv: "KIM", 2017). [in Russian].




DOI: https://doi.org/10.15407/hftp14.03.415

Copyright (©) 2023 Z. A. Matysina, An. D. Zolotarenko, Ol. D. Zolotarenko, N. A. Shvachko, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, Yu. I. Zhirko, E. P. Rudakova, Yu. O. Tarasenko, A. D. Zolotarenko, M. V. Chymbai, O. O. Havryliuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.