Ortho-thiocarborane immobilization on the gadolinium oxide-doped magnetite nanocomposites
DOI: https://doi.org/10.15407/hftp08.02.203
Abstract
Novel neutron capture agents for the boron and gadolinium neutron capture therapy magnetic nanostructures have been created. The magnetic nanocomposites obtained could be applied as carriers for targeted delivery of 157Gd and 10В in order to their retention in tissues. Such materials can find an application in neutron capture therapy of cancer and multimodal Т1/Т2 MRI.
The aim of research is the synthesis of B- and Gd-containing nanomaterials perspective for application in neutron capture therapy of cancer and MRI.
All reagents were of analytical grade and used without further purification. Demineralized water was used for preparation of all sample solutions.
Starch, sodium thiosulfate, 0.1 N iodine solution in water, Phosphate buffer (рН 7.2), DMSO, ethanol, FeCl3×6H2O, FeSO4×7H2O, Gd(NO3)3×6H2O, and aqueous NH4OH (25 %) were purchased from local supplier (Himlaborreaktiv, Ltd). Meso-2,3-dimercaptosuccinic acid (DMSA) was purchased from Sigma-Aldrich. Orto-thiocarborane was purchased from Merck Schuchardtohg. 2,2'-dipyridyldisulfide was purchased from Sigma. 2-Mercaptonicotinic acid ≥99.0 % (HPLC) was purchased from Sigma-Aldrich.
UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder difraction (XRD) were used for analysis.
In order to obtain novel neutron capture agents magnetic nanostructures have been developed for the boron and Gd neutron capture therapy based on Fe3O4 with optional Gd content and molecules containing 10-boron atoms. Molecular formula of the composite is Fe3O4/Gd2O3-S-S-Н11В10С2.
Ortho-thiocarborane immobilization was carried out by thiol-disulphide exchanging reaction. The surface of Fe3O4/Gd2O3 composite was modified by meso-2,3 dimercaptosuccinic acid in order to create free SH groups on the surface. Dipyridildisulphide was used as @leaving@ molecule from the surface of DMSA-Fe3O4/Gd2O3 composite. The XPS spectroscopy studies confirmed presence of boron about and S-S bonds on the surface. According to our estimations, 0.07 mmol/g of carborane was immobilized.
Keywords
References
1. Fauconnier N., Pons J., Roger J. Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid. J. Colloid Interface Sci. 1997. 194(2): 427. https://doi.org/10.1006/jcis.1997.5125
2. Halbreich A., Sabolovic, D., Sestier A. Scientific and Clinical Applications of Magnetic Carriers: An Overview. (New York: Plenum, 1997).
3. Fukumori Y. Ichikawa H. Nanoparticles for cancer therapy and diagnosis. Adv. Powder Technol. 2006. 17(1): 1. https://doi.org/10.1163/156855206775123494
4. Turanskaya S., Turelyk M., Petranovskaya A., Turov V., Gorbyk P. Nanocomposites in neutron capture therapy. Surface. 2010. 17(2): 355. [in Russian].
5. Theodoropoulos D., Rova A., Smith J.R., Barbu E., Calabrese G., Vizirianakis I.S., Tsibouklis J., Fatouros D.G. Towards boron neutron capture therapy: The formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane. Bioorg. Med. Chem. Lett. 2013. 23(22): 6161. https://doi.org/10.1016/j.bmcl.2013.09.003
6. Białek-Pietras M., Olejniczak A., Tachikawa S., Nakamura H., Leśnikowski Z.J. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates. Bioorg. Med. Chem. 2013. 21(5): 1136. https://doi.org/10.1016/j.bmc.2012.12.039
7. Ueno M., Ban H., Nakai K., Inomata R., Kaneda Y., Matsumura A., Nakamura H. Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioor. Med. Chem. 2010. 18(9): 3059. https://doi.org/10.1016/j.bmc.2010.03.050
8. Dou H., Zhong W., Yang L., Wang T., Yan H., Hou Y. Synthesis, cytotoxic activities and cell cycle arrest profiles of half-sandwich N-sulfonamide based dithio-o-carborane metal complexes. Bioorg. Med. Chem. 2012. 20(15): 4693. https://doi.org/10.1016/j.bmc.2012.06.016
9. Easson M., Fronczek F., Jensen T., Vicente M.G.H. Synthesis and in vitro properties of trimethylamine- and phosphonate-substituted carboranylporphyrins for application in BNCT. Bioorg. Med. Chem. 2008. 16(6): 3191. https://doi.org/10.1016/j.bmc.2007.12.020
10. Luguya R., Jensen T., Smith K., Vicente M.G. Synthesis and cellular studies of a carboranylchlorin for the PDT and BNCT of tumors. Bioorg. Med. Chem. 2006. 14(17): 5890. https://doi.org/10.1016/j.bmc.2006.05.026
11. Białek-Pietras M., Olejniczak A., Tachikawa S., Nakamura H., Leśnikowski Z.J. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates. Bioorg. Med. Chem. 2013. 21(5): 1136. https://doi.org/10.1016/j.bmc.2012.12.039
12. Pylypchuk I.V., Petranovska A.L., Gorbyk P.P., Korduban O.M., Rogovtsov A.A., Shevchenko Y.B. Gadolinium and boron containing nanocomposites based on magnetite. Metallofiz. Noveishie Tekhnol. 2014. 36(6): 767. [in Ukrainian]. https://doi.org/10.15407/mfint.36.06.0767
13. Pylypchuk Ie.V., Zubchuk Yu.O., Petranovskaya A.L., Turanska S.P., Gorbyk P.P. Synthesis and properties of Fe3O4/hydroxyapatite/pamidronic acid/diethylenetriaminepentaacetic acid/Gd3+ nanocomposites. Him. Fiz. Tehnol. Poverhni. 2015. 6(3): 326. [in Ukrainian]. https://doi.org/10.15407/hftp06.03.326
14. Lavrenchuk H.I., Shevchenko Yu.B., Petranovs'ka A.L., Pylypchuk E.V., Kozlovs'ka I.V. Impact of 157Gd containing nanoscale magnetosensitive composites on morfofunctional properties of cells in vitro. Nuclear Physics and Atomic Energy. 2014. 15(2): 163. [in Ukrainian].
15. Pylypchuk Ie., Gorbyk P. B- and Gd-containing nanomaterials and nanocomposites for neutron capture therapy. Surface. 2014. 6(21): 150. [in Ukrainian].
16. Nemoto H., Cai J., Nakamura H., Fujiwara M., Yamamoto Y. The synthesis of a carborane gadolinium – DTPA complex for boron neutron capture therapy. J. Organomet. Chem. 1999. 581(1–2): 170. https://doi.org/10.1016/S0022-328X(99)00049-2
17. Woodburn K., Phadke A., Morgan A. An in vitro study of boronated porphyrins for potential use in boron neutron capture therap. Bioorg. Med. Chem. Lett. 1993. 3(10): 2017. https://doi.org/10.1016/S0960-894X(01)81006-4
18. Ol'shevskaya V., Nikitina R., Savchenko A., Malshakova M.V., Vinogradov A.M., Golovina G.V., Belykh D.V., Kutchin A.V., Kaplan M.A., Kalinin V.N., Kuzmin V.A., Shtil A.A. Novel boronated chlorin e6-based photosensitizers: Synthesis, binding to albumin and antitumour efficacy. Bioorg. Med. Chem. 2009. 17(3): 1297. https://doi.org/10.1016/j.bmc.2008.12.016
19. Takahashi K., Nakamura H., Furumoto Sh., Yamamoto K., Fukuda H., Matsumura A., Yamamoto Y. Synthesis and in vivo biodistribution of BPA–Gd–DTPA complex as a potential MRI contrast carrier for neutron capture therapy. Bioorg. Med. Chem. 2005. 13(3): 735. https://doi.org/10.1016/j.bmc.2004.10.046
20. Narayanasamy S., Thirumamagal B., Johnsamuel J., Byuna Y., Al-Madhoun A.S., Usova E., Cosquer G.Y., Yan J., Bandyopadhyaya A.K. Hydrophilically enhanced 3-carboranyl thymidine analogues (3CTAs) for boron neutron capture therapy (BNCT) of cancer. Bioorg. Med. Chem. 2006. 14(20): 6886. https://doi.org/10.1016/j.bmc.2006.06.039
21. Leśnikowski Z., Paradowska E., Olejniczak A., Studzińska M., Seekamp P., Schüssler U., Gabel D., Schinazi R.F., Plesek J. Towards new boron carriers for boron neutron capture therapy: metallacarboranes and their nucleoside conjugates. Bioorg. Med. Chem. 2005. 13(13): 4168. https://doi.org/10.1016/j.bmc.2005.04.042
22. Tietze L., Bothe U., Griesbach U., Nakaichi M., Hasegawa T., Nakamura H., Yamamoto Y. Ortho-Carboranyl Glycosides for the Treatment of Cancer by Boron Neutron Capture Therapy. Bioorg. Med. Chem. 2001. 9(7): 1747. https://doi.org/10.1016/S0968-0896(01)00061-X
23. Reddy V. Roforth M., Tan C., Reddy M. Synthesis of functionalized carboranes as potential anticancer and bnct agents. Inorg. Chem. 2007. 46(2): 381. https://doi.org/10.1021/ic061948i
24. Bartha R., Yang W., Wu G., Swindall M., Byun Y., Narayanasamy S., Tjarks W., Tordoff K., Moeschberger M.L., Eriksson S., Binns P.J., Riley K.J. Thymidine kinase as a molecular target for boron neutron capture therapy of brain tumors. PNAS. 2008. 105(45): 17493. https://doi.org/10.1073/pnas.0809569105
25. Hwang K., Lai P., Chiang C., Wang P.J., Yuan C.J. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells. Biomaterials. 2010. 31(32): 8419. https://doi.org/10.1016/j.biomaterials.2010.07.057
26. Meo C., Panza L., Capitani D., Mannina L., Banzato A., Rondina M., Renier D., Rosato A., Crescenzi V. Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy. Biomacromolecules. 2007. 8(2): 552. https://doi.org/10.1021/bm0607426
27. Gorbyk P., Petranovskaya A., Pylypchuk Ie., Abramov N., Oranskaya E., Korduban A. Synthesis of magnetosensitive Gd-containing nanostructures. Him. Fiz. Tehnol. Poverhni. 2011. 2(4): 385. [in Russian].
28. Usov D., Petranovskaya A, Turelyk M., Korduban A., Gorbyk P. Synthesis and physico-chemical properties of nanocomposites on the base of magnetite, modified by meso-2,3-dimercaptosuccinic acid. Surface. 1(16): 320. [in Ukrainian].
29. Nefedov V. X-Ray Photoelectron Spectroscopy of chemical compounds. (Moscow: Chemistry, 1984). [in Russian].
30. Wagner C., Moulder J., Davis L., Riggs W. Handbook of X-ray Photoelectron Spectroscopy. (New York: Perking-Elmer Corp., 1979).
DOI: https://doi.org/10.15407/hftp08.02.203
Copyright (©) 2017 A. L. Petranovska, Ie. V. Pylypchuk, P. P. Gorbyk, O. M. Korduban
This work is licensed under a Creative Commons Attribution 4.0 International License.