Іммобілізація орто-тіокарборану на нанокомпозитах магнетиту, допованих оксидом гадолінію
DOI: https://doi.org/10.15407/hftp08.02.203
Анотація
Запропоновано спосіб іммобілізації орто-тіокарборану (С2В10Н11-SH) на поверхні нанокомпозитів складу Fe3O4/Gd2O3 за реакцією тіол-дисульфідного обміну. Для одержання вільних -SH груп поверхня нанокомпозитів Fe3O4/Gd2O3 попередньо модифікувалась мезо-2,3-димеркаптосукциновою кислотою. Встановлено число реакційноздатних тіольних груп на поверхні нанокомпозитів, а також кількість іммобілізованого орто-тіокарборану. Структуру синтезованих нанокомпозитів підтверджено комплексом фізико-хімічних методів аналізу.
Ключові слова
Посилання
1. Fauconnier N., Pons J., Roger J. Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid. J. Colloid Interface Sci. 1997. 194(2): 427. https://doi.org/10.1006/jcis.1997.5125
2. Halbreich A., Sabolovic, D., Sestier A. Scientific and Clinical Applications of Magnetic Carriers: An Overview. (New York: Plenum, 1997).
3. Fukumori Y. Ichikawa H. Nanoparticles for cancer therapy and diagnosis. Adv. Powder Technol. 2006. 17(1): 1. https://doi.org/10.1163/156855206775123494
4. Turanskaya S., Turelyk M., Petranovskaya A., Turov V., Gorbyk P. Nanocomposites in neutron capture therapy. Surface. 2010. 17(2): 355. [in Russian].
5. Theodoropoulos D., Rova A., Smith J.R., Barbu E., Calabrese G., Vizirianakis I.S., Tsibouklis J., Fatouros D.G. Towards boron neutron capture therapy: The formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane. Bioorg. Med. Chem. Lett. 2013. 23(22): 6161. https://doi.org/10.1016/j.bmcl.2013.09.003
6. Białek-Pietras M., Olejniczak A., Tachikawa S., Nakamura H., Leśnikowski Z.J. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates. Bioorg. Med. Chem. 2013. 21(5): 1136. https://doi.org/10.1016/j.bmc.2012.12.039
7. Ueno M., Ban H., Nakai K., Inomata R., Kaneda Y., Matsumura A., Nakamura H. Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioor. Med. Chem. 2010. 18(9): 3059. https://doi.org/10.1016/j.bmc.2010.03.050
8. Dou H., Zhong W., Yang L., Wang T., Yan H., Hou Y. Synthesis, cytotoxic activities and cell cycle arrest profiles of half-sandwich N-sulfonamide based dithio-o-carborane metal complexes. Bioorg. Med. Chem. 2012. 20(15): 4693. https://doi.org/10.1016/j.bmc.2012.06.016
9. Easson M., Fronczek F., Jensen T., Vicente M.G.H. Synthesis and in vitro properties of trimethylamine- and phosphonate-substituted carboranylporphyrins for application in BNCT. Bioorg. Med. Chem. 2008. 16(6): 3191. https://doi.org/10.1016/j.bmc.2007.12.020
10. Luguya R., Jensen T., Smith K., Vicente M.G. Synthesis and cellular studies of a carboranylchlorin for the PDT and BNCT of tumors. Bioorg. Med. Chem. 2006. 14(17): 5890. https://doi.org/10.1016/j.bmc.2006.05.026
11. Białek-Pietras M., Olejniczak A., Tachikawa S., Nakamura H., Leśnikowski Z.J. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates. Bioorg. Med. Chem. 2013. 21(5): 1136. https://doi.org/10.1016/j.bmc.2012.12.039
12. Pylypchuk I.V., Petranovska A.L., Gorbyk P.P., Korduban O.M., Rogovtsov A.A., Shevchenko Y.B. Gadolinium and boron containing nanocomposites based on magnetite. Metallofiz. Noveishie Tekhnol. 2014. 36(6): 767. [in Ukrainian]. https://doi.org/10.15407/mfint.36.06.0767
13. Pylypchuk Ie.V., Zubchuk Yu.O., Petranovskaya A.L., Turanska S.P., Gorbyk P.P. Synthesis and properties of Fe3O4/hydroxyapatite/pamidronic acid/diethylenetriaminepentaacetic acid/Gd3+ nanocomposites. Him. Fiz. Tehnol. Poverhni. 2015. 6(3): 326. [in Ukrainian]. https://doi.org/10.15407/hftp06.03.326
14. Lavrenchuk H.I., Shevchenko Yu.B., Petranovs'ka A.L., Pylypchuk E.V., Kozlovs'ka I.V. Impact of 157Gd containing nanoscale magnetosensitive composites on morfofunctional properties of cells in vitro. Nuclear Physics and Atomic Energy. 2014. 15(2): 163. [in Ukrainian].
15. Pylypchuk Ie., Gorbyk P. B- and Gd-containing nanomaterials and nanocomposites for neutron capture therapy. Surface. 2014. 6(21): 150. [in Ukrainian].
16. Nemoto H., Cai J., Nakamura H., Fujiwara M., Yamamoto Y. The synthesis of a carborane gadolinium – DTPA complex for boron neutron capture therapy. J. Organomet. Chem. 1999. 581(1–2): 170. https://doi.org/10.1016/S0022-328X(99)00049-2
17. Woodburn K., Phadke A., Morgan A. An in vitro study of boronated porphyrins for potential use in boron neutron capture therap. Bioorg. Med. Chem. Lett. 1993. 3(10): 2017. https://doi.org/10.1016/S0960-894X(01)81006-4
18. Ol'shevskaya V., Nikitina R., Savchenko A., Malshakova M.V., Vinogradov A.M., Golovina G.V., Belykh D.V., Kutchin A.V., Kaplan M.A., Kalinin V.N., Kuzmin V.A., Shtil A.A. Novel boronated chlorin e6-based photosensitizers: Synthesis, binding to albumin and antitumour efficacy. Bioorg. Med. Chem. 2009. 17(3): 1297. https://doi.org/10.1016/j.bmc.2008.12.016
19. Takahashi K., Nakamura H., Furumoto Sh., Yamamoto K., Fukuda H., Matsumura A., Yamamoto Y. Synthesis and in vivo biodistribution of BPA–Gd–DTPA complex as a potential MRI contrast carrier for neutron capture therapy. Bioorg. Med. Chem. 2005. 13(3): 735. https://doi.org/10.1016/j.bmc.2004.10.046
20. Narayanasamy S., Thirumamagal B., Johnsamuel J., Byuna Y., Al-Madhoun A.S., Usova E., Cosquer G.Y., Yan J., Bandyopadhyaya A.K. Hydrophilically enhanced 3-carboranyl thymidine analogues (3CTAs) for boron neutron capture therapy (BNCT) of cancer. Bioorg. Med. Chem. 2006. 14(20): 6886. https://doi.org/10.1016/j.bmc.2006.06.039
21. Leśnikowski Z., Paradowska E., Olejniczak A., Studzińska M., Seekamp P., Schüssler U., Gabel D., Schinazi R.F., Plesek J. Towards new boron carriers for boron neutron capture therapy: metallacarboranes and their nucleoside conjugates. Bioorg. Med. Chem. 2005. 13(13): 4168. https://doi.org/10.1016/j.bmc.2005.04.042
22. Tietze L., Bothe U., Griesbach U., Nakaichi M., Hasegawa T., Nakamura H., Yamamoto Y. Ortho-Carboranyl Glycosides for the Treatment of Cancer by Boron Neutron Capture Therapy. Bioorg. Med. Chem. 2001. 9(7): 1747. https://doi.org/10.1016/S0968-0896(01)00061-X
23. Reddy V. Roforth M., Tan C., Reddy M. Synthesis of functionalized carboranes as potential anticancer and bnct agents. Inorg. Chem. 2007. 46(2): 381. https://doi.org/10.1021/ic061948i
24. Bartha R., Yang W., Wu G., Swindall M., Byun Y., Narayanasamy S., Tjarks W., Tordoff K., Moeschberger M.L., Eriksson S., Binns P.J., Riley K.J. Thymidine kinase as a molecular target for boron neutron capture therapy of brain tumors. PNAS. 2008. 105(45): 17493. https://doi.org/10.1073/pnas.0809569105
25. Hwang K., Lai P., Chiang C., Wang P.J., Yuan C.J. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells. Biomaterials. 2010. 31(32): 8419. https://doi.org/10.1016/j.biomaterials.2010.07.057
26. Meo C., Panza L., Capitani D., Mannina L., Banzato A., Rondina M., Renier D., Rosato A., Crescenzi V. Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy. Biomacromolecules. 2007. 8(2): 552. https://doi.org/10.1021/bm0607426
27. Gorbyk P., Petranovskaya A., Pylypchuk Ie., Abramov N., Oranskaya E., Korduban A. Synthesis of magnetosensitive Gd-containing nanostructures. Him. Fiz. Tehnol. Poverhni. 2011. 2(4): 385. [in Russian].
28. Usov D., Petranovskaya A, Turelyk M., Korduban A., Gorbyk P. Synthesis and physico-chemical properties of nanocomposites on the base of magnetite, modified by meso-2,3-dimercaptosuccinic acid. Surface. 1(16): 320. [in Ukrainian].
29. Nefedov V. X-Ray Photoelectron Spectroscopy of chemical compounds. (Moscow: Chemistry, 1984). [in Russian].
30. Wagner C., Moulder J., Davis L., Riggs W. Handbook of X-ray Photoelectron Spectroscopy. (New York: Perking-Elmer Corp., 1979).
DOI: https://doi.org/10.15407/hftp08.02.203
Copyright (©) 2017 A. L. Petranovska, Ie. V. Pylypchuk, P. P. Gorbyk, O. M. Korduban
This work is licensed under a Creative Commons Attribution 4.0 International License.