On the problem of physical-chemical parameters influence on the frequency of spontaneous electrochemical oscillations
DOI: https://doi.org/10.15407/hftp08.03.225
Abstract
Keywords
References
1. Delmonde M.V.F., Sallum L.F., Perini N., Gonzalez E.R., Schlogl R., Varela H. Electrocatalytic efficiency of the oxidation of small organic molecules under oscillatory regime. J. Phys. Chem. C. 2016. 120(39): 22365. https://doi.org/10.1021/acs.jpcc.6b06692
2. Mota A., Eiswirth M., Gonzalez E.R. Enhanced efficiency of CO-containing hydrogen electroxidation with autonomous oscillations. J. Phys. Chem. C. 2013. 117(24): 12495. https://doi.org/10.1021/jp311185c
3. Perini N., Sitta E., Angelo A., Varela H. Electrocatalytic activity under oscillatory regime: The electro-oxidation of formic acid on ordered Pt3Sn intermetallic phase. Catal. Commun. 2013. 30: 23. https://doi.org/10.1016/j.catcom.2012.10.019
4. Lu H., Rihko-Struckmann L., Hanke-Rauschenbach R., Sundmacher K. Improved electrochemical CO removal via potential oscillations in serially connected PEM fuel cells with PtRu anodes. Electrochim. Acta. 2009. 54(4): 1184. https://doi.org/10.1016/j.electacta.2008.08.053
5. Mota-Lima A., Silva D.R., Gasparotto L.H.S., Gonzalez E.R. Stationary and damped oscillations in a direct formic acid fuel cell (DFAFC) using Pt/C. Electrochim. Acta. 2017. 235: 135. https://doi.org/10.1016/j.electacta.2017.03.056
6. Kirsch S., Hanke-Rauschenbach R., Stein B., Kraume R., Sundmacher K., The electrooxidation of H2, CO in a model PEM fuel cell: oscillations, chaos, pulses. J. Electrochem. Soc. 2013. 160(4): F436. https://doi.org/10.1149/2.002306jes
7. Ramirez-Alvareza E., Rico-Martinez R., Krischer K. Self-organized reactivity patterns during the oxidation of H2–CO mixtures on a rotating Pt ring-electrode. Electrochim. Acta. 2013. 112: 894. https://doi.org/10.1016/j.electacta.2013.05.098
8. Varela H. Spatiotemporal pattern formation during electrochemical oxidation of hydrogen on platinum. Chemistry Open. 2012. 1(4): 165. https://doi.org/10.1002/open.201200017
9. Sallum L.F., Gonzalez E.R., Feliu J.M. Potential oscillations during electro-oxidation of ethanol on platinum in alkaline media: The role of surface sites. Electrochem. Commun. 2016. 72: 83. https://doi.org/10.1016/j.elecom.2016.09.005
10. Han L., Ju H., Xu Y. Ethanol electro-oxidation: Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic oscillation. Int. J. Hydrogen Energy. 2012. 37(20): 15156. https://doi.org/10.1016/j.ijhydene.2012.08.034
11. Nogueira J.A., Arias I.K.P., Hanke-Rauschenbach R., Vidakovic-Koch T., Varela H., Sundmacher K. Autonomous voltage oscillations in a direct methanol fuel cell. Electrochim. Acta. 2016. 212: 545. https://doi.org/10.1016/j.electacta.2016.07.050
12. Zulke A.A., Varela H. The effect of temperatute on the coupled slow and fast surface dynamics of an electrochemical oscillator. Sci. Rep. 2016. 6: 24553. https://doi.org/10.1038/srep24553
13. Gojuki T., Numata Y., Mukouyama Y., Okamoto H. Hidden negative differential resistance in the oxidation of formic acid on platinum. Electrochim. Acta. 2014. 129: 142. https://doi.org/10.1016/j.electacta.2014.02.102
14. Boscheto E., Batista B.C., Lima R.B., Varela H. A surface-enhanced infrared absorption spectroscopic (SEIRAS) study of the oscillatory electro-oxidation of methanol. J. Electroanal. Chem. 2010. 642(1): 17. https://doi.org/10.1016/j.jelechem.2010.01.026
15. Seidel Y.E., Jusys Z., Lindström R.W., Stenfeldt M., Kasemo B., Krischer K. Oscillatory behavior in galvanostatic formaldehyde oxidation on nanostructured Pt/glassy carbon model electrodes. Chem. Phys. Chem. 2010. 11(7): 1405. https://doi.org/10.1002/cphc.200901029
16. Delmonde M.V.F., Nascimento M. A., Nagao R., Cantane D.A., Lima F.H.B., Varela H. Production of volatile species during the oscillatory electro-oxidation of small organic molecules. J. Phys. Chem. C. 2014. 118(31): 17699. https://doi.org/10.1021/jp5044915
17. Mukouyama Y., Kawasaki H., Hara D., Kikuchi M., Yamada Y., Nakanishi S. Alkali metal ions induced electrochemical oscillations in H2O2-H2SO4-Pt system. ECS Trans. 2015. 69(39): 37. https://doi.org/10.1149/06939.0037ecst
18. Mukouyama Y., Hara D., Kawasaki H., Kikuchi M., Yamada Y., Nakanishi S. Chaotic oscillations in H2O2-H2SO4-Pt electrochemical system. ECS Trans. 2015. 69(39): 47. https://doi.org/10.1149/06939.0047ecst
19. Mukouyama Y., Hara D., Kawasaki H., Kikuchi M., Yamada Y., Nakanishi S. Bifurcation behavior in oscillations during H2O2 reduction at Pt electrodes. ECS Trans. 2017. 75: 113. https://doi.org/10.1149/07552.0113ecst
20. Sitta E., Nagao R., Kiss I.Z., Varela H. Impact of the alkali cation on the oscillatory electro-oxidation of ethylene glycol on platinum. J. Phys. Chem. C. 2015. 119(3): 1464. https://doi.org/10.1021/jp5105505
21. Oliveira C.P., Lussari N.V., Sitta E., Varela H. Oscillatory electro-oxidation of glycerol on platinum. Electrochim. Acta. 2012. 85: 674. https://doi.org/10.1016/j.electacta.2012.08.087
22. Bi W., He Y., Cabral M.F., Varela H., Yang J., Jiang R., Gao Q. Oscillatory electro-oxidation of thiosulfate on gold. Electrochim. Acta. 2014. 133: 308. https://doi.org/10.1016/j.electacta.2014.04.055
23. Bell J.G., Wang J. Nonlinear instabilities during the electrochemical oxidation of hydroxymethanesulfinate. Electrochim. Acta. 2016. 222: 678. https://doi.org/10.1016/j.electacta.2016.11.023
24. Chen C., Ozasa K., Kitamura F., Katsumata K., Maeda M., Okada K., Matsushita N. Self-organization of TiO2 nanobamboos by anodization with deep eutectic solvent. Electrochim. Acta. 2015. 153: 409. https://doi.org/10.1016/j.electacta.2014.11.084
25. Ozkan S., Mazare A., Schmuki P. Self-induced current oscillations during anodization of Ti in LA containing DMSO electrolyte. Electrochem. Commun. 2016. 65: 18. https://doi.org/10.1016/j.elecom.2016.02.001
26. Liu H., Tao L., Shen W. Controllable current oscillation and pore morphology evolution in the anodic growth of TiO2 nanotubes. Nanotechnology. 2011. 22(15): 155603. https://doi.org/10.1088/0957-4484/22/15/155603
27. Eskhult J., Ulrich C., Björefors F., Nyholm L. Current oscillation during chronoamperometric and cyclic voltammetric measurements in alkaline Cu(II)-citrate solutions. Electrochim. Acta. 2008. 53(5): 2188. https://doi.org/10.1016/j.electacta.2007.09.032
28. Sakai S., Nakanishi S., Nakato Y. Mechanisms of oscillations and formation of nano-scale layered structures in induced co-deposition of some iron-group alloys (Ni-P, Ni-W, and Co-W), studied by an in situ electrochemical quartz crystal microbalance technique. J. Phys. Chem. B. 2006. 110(24): 11944. https://doi.org/10.1021/jp061282d
29. Nakanishi S., Sakai S.I., Nishimura K., Nakato Y. Layer-by-layer electrodeposition of copper in the presence of o-phenanthroline, caused by a new type of hidden NDR oscillation with the effective electrode surface area as the key variable. J. Phys. Chem. B. 2005. 109(40): 18846. https://doi.org/10.1021/jp0513871
30. Sakai S.I., Nakanishi S., Fukami K., Nakato Y. Oscillation-induced layer-by-layer electrodeposition producing alternate metal and metal-alloy multilayers on a nanometer scale. Chem. Lett. 2002. 31(6): 640 https://doi.org/10.1246/cl.2002.640
31. Nakanishi S., Sakai S., Nagai T., Nakato Y. Macroscopically uniform nanoperiod alloy multilayers formed by coupling of electrodeposition with current oscillations. J. Phys. Chem. B. 2005. 109(5): 1750. https://doi.org/10.1021/jp045876x
32. Kamiya K., Hashimoto K., Nakanishi S. Acceleration effect of adsorbed thiocyanate ions on electrodeposition of CuSCN, causing spontaneous electrochemical oscillation. Chem. Phys. Lett. 2012. 530: 77. https://doi.org/10.1016/j.cplett.2012.01.049
33. Sazou D., Pavlidou M., Pagitsas M. Potential oscillations induced by localized corrosion of the passivity on iron in halide-containing sulfuric acid media as a probe for a comparative study of the halide effect. J. Electroanal. Chem. 2012. 675: 54. https://doi.org/10.1016/j.jelechem.2012.04.012
34. Polmann L., Bauer G., Hartmann P., Wachter P., Donner C. Oscillatory passive active transition during the corrosion in nickel chromium layer systems. J. Solid State Electrochem. 2013. 17(2): 489. https://doi.org/10.1007/s10008-012-1949-3
35. Dobrovolska T., López-Sauri D.A., Veleva L., Krastev I. Oscillations and spatio-temporal structures during electrodeposition of AgCd alloys. Electrochim. Acta. 2012. 79: 162. https://doi.org/10.1016/j.electacta.2012.06.100
36. Krastev I., Dobrovolska T. Pattern formation during electrodeposition of alloys. J. Solid State Electrochem. 2013. 17(2): 481. https://doi.org/10.1007/s10008-012-1971-5
37. Bozzini B., Lacitignola D., Sgura I. Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation. J. Solid State Electrochem. 2013. 17(2): 467. https://doi.org/10.1007/s10008-012-1945-7
38. Bozzini B., Amati M., Gregoratti L., Lacitignola D., Sgura I., Krastev I., Dobrovolska T. Intermetallics as key to spiral formation in In-Co electrodeposition. A study based on photoelectrone microspectroscopy, mathematical modeling and numerical approximations. J. Phys. D: Appl. Phys. 2015. 48(39): 395502. https://doi.org/10.1088/0022-3727/48/39/395502
39. Nascimento M.A., Varela H. Periodicity hubs and spirals in an electrochemical oscillator. J. Solid State Electrochem. 2015. 19(11): 3287. https://doi.org/10.1007/s10008-015-2800-4
40. Potkonjak N.I., Nikolić Z., Anić S.R., Minić D.M. Electrochemical oscillations during copper electrodissolution/passivation in trifluoroacetic acid induced by current interrupt method. Corros. Sci. 2014. 83: 355. https://doi.org/10.1016/j.corsci.2014.02.034
41. Birzu A., Jia Y., Sankuratri V., Liu Y., Kiss I.Z. Spatially distributed current oscillations with electrochemical reactions in microfluidic flow cells. Chem. Phys. Chem. 2015. 16(3): 555. https://doi.org/10.1002/cphc.201402631
42. Urvolgyi M., Gaspar V., Nagy T., Kiss I Z. Quantitative dynamical relationships for the effect of rotation rate on frequency and waveform of electrochemical oscillations. Chem. Eng. Sci. 2012. 83: 56. https://doi.org/10.1016/j.ces.2011.10.073
43. Kiss I.Z., Pelster L.N., Wickramasinghe M., Yablonsky G.S. Frequency of negative differential resistance electrochemical oscillators: Theory and experiments. Phys. Chem. Chem. Phys. 2009. 11: 5720. https://doi.org/10.1039/b904650j
44. Kiss I.Z., Kazsu Z., Gaspar V. Scaling relationship for oscillating electrochemical systems: Dependence of phase diagram on electrode size and rotation rate. Phys. Chem. Chem. Phys. 2009. 11: 7669. https://doi.org/10.1039/b905295j
45. Cioffi A.G., Martin R.S., Kiss I.Z. Electrochemical oscillations of nickel electrodissolution in an epoxy-based microchip flow cell. J. Electroanal. Chem. 2011. 659(1): 92. https://doi.org/10.1016/j.jelechem.2011.05.007
46. Orlik M. Self-organization in nonlinear dynamical systems and its relation to the materials science. J. Solid State Electrochem. 2009. 13(2): 245. https://doi.org/10.1007/s10008-008-0554-y
47. Orlik M. Self-Organization in Electrochemical Systems: I General principles of self-organization. Temporal instabilities; II Spatiotemporal patterns and control of chaos. (Berlin Heidelberg: Springer-Verlag, 2012). https://doi.org/10.1007/978-3-642-27673-6
48. Strasser P., Eiswirth M., Koper M.T.M., Mechanistic classification of electrochemical oscillators - an operational experimental strategy. J. Electroanal. Chem. 1999. 478(1–2): 50. https://doi.org/10.1016/S0022-0728(99)00412-X
49. Krischer K., Mazouz N., Grauel P. Fronts, waves, and stationary patterns in electrochemical systems. Angew. Chem. Int. Ed. 2001. 40(5): 851. https://doi.org/10.1002/1521-3773(20010302)40:5<850::AID-ANIE850>3.0.CO;2-3
50. Krischer K. Spontaneous formation of spatiotemporal patterns at the electrode | electrolyte interface. J. Electroanal. Chem. 2001. 501(1–2): 1. https://doi.org/10.1016/S0022-0728(00)00490-3
51. Koper M.T.M. Non-linear phenomena in electrochemical systems. J. Chem. Soc. Faraday Trans. 1998. 94: 1369. https://doi.org/10.1039/a708897c
52. Pototskaya V.V., Gichan O.I. On stability of model electrocatalytic process with Frumkin adsorption isotherm occurring on spherical electrode. Russ. J. Electrochem. 2012. 48(2): 154. https://doi.org/10.1134/S1023193512020140
53. Gichan O.I. Peculiarities of the Hopf instability onset on a charged interface of planar, cylindrical, and spherical forms. Dopovidi NAN Ukraine. 2013. 11: 67. [in Ukrainian].
54. Gichan O.I., Pototskaya V.V. Bulk concentration and dynamic stability of a model electrochemical system with a preceding chemical reaction. Electrochim. Acta. 2013. 112: 957. https://doi.org/10.1016/j.electacta.2013.07.049
55. Gichan O.I., Pototskaya V.V. Can a form of electrode/electrolyte interface change the ranges of dynamic instabilities? Bulgarian Chemical Communications. 2016. 48(B): 7.
56. Gichan O.I. Dynamic instabilities on a charged boundary: influence of mass transfer. Dopovidi NAN Ukraine. 2016. 10: 47. [in Ukrainian].
57. Pototskaya V.V., Gichan O.I. Role of ohmic losses in appearance of dynamic instabilities in model electrochemical system with cylindrical electrode under potentiostatic conditions. Russ. J. Electrochem. 2014. 50(11): 1009. [in Ukrainian]. https://doi.org/10.1134/S1023193514110081
58. Gichan O.I. Capacitance of electrical double layer and dynamic instabilities. Him. Fiz. Tehnol. Poverhni. 2015. 6(4): 449. [in Ukrainian]. https://doi.org/10.15407/hftp06.04.449
59. Koper M.T.M., Sluyters J.H. Instabilities and oscillations in simple models of electrocatalytic surface reactions. J. Electroanal. Chem. 1994. 371(1–2): 149. https://doi.org/10.1016/0022-0728(93)03248-N
60. Koper M.T.M. Stability study and categorization of electrochemical oscillations by impedance spectroscopy. J. Electroanal. Chem. 1996. 409(1–2): 175. https://doi.org/10.1016/0022-0728(95)04391-8
61. Berthier F., Diard J.P., Montella C. Hopf bifurcation and sign of the transfer resistance. Electrochim. Acta. 1999. 44(14): 2397. https://doi.org/10.1016/S0013-4686(98)00370-3
62. Naito M., Tanaka N., Okamoto H. General relation between complex impedance and linear stability in electrochemical systems. J. Chem. Phys. 1999. 111: 9908. https://doi.org/10.1063/1.480345
63. Sadkowski A. Small signal (local) analysis of electrocatalytic reaction. Pole-zero approach. J. Electroanal. Chem. 1999. 465(2): 119. https://doi.org/10.1016/S0022-0728(99)00067-4
64. Zamel N., Hanke-Rauschenbach R., Kirsch S., Bhattarai A., Gerteisen D. Relating the N-shaped polarization curve of a PEM fuel cell to a local oxygen starvation and hydrogen evolution. Int. J. Hydrogen Energy. 2013. 38(35): 15318. https://doi.org/10.1016/j.ijhydene.2013.09.130
65. Song H., Qiu X., Li X., Li F., Zhu W., Chen L. TiO2 nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media. J. Power Sources. 2007. 170(1): 50. https://doi.org/10.1016/j.jpowsour.2007.04.017
66. Freitas R.G., Pereira E.C. Giant multilayer electrocatalytic effect investigation on Pt/Bi/Pt nanostructured electrodes towards CO and methanol electrooxidation. Electrochim. Acta. 2010. 55(26): 7622. https://doi.org/10.1016/j.electacta.2009.12.014
67. Michel R., Montella C. Diffusion–convection impedance using an efficient analytical approximation of the mass transfer function for a rotating disk. J. Electroanal. Chem. 2015. 736: 139. https://doi.org/10.1016/j.jelechem.2014.11.009
68. Pototskaya V.V., Gichan O.I. On the theory of the generalized Gerischer impedance for an electrode with modeling roughness. Electrochim. Acta. 2017. 235: 583. https://doi.org/10.1016/j.electacta.2017.03.091
DOI: https://doi.org/10.15407/hftp08.03.225
Copyright (©) 2017 O. I. Gichan
This work is licensed under a Creative Commons Attribution 4.0 International License.