Хімія, фізика та технологія поверхні, 2017, 8 (3), 225-249.

До питання про вплив фізико-хімічних параметрів на частоту спонтанних електрохімічних коливань



DOI: https://doi.org/10.15407/hftp08.03.225

O. I. Gichan

Анотація


Проведено огляд сучасних літературних даних щодо виникнення спонтанних коливань у електрохімічних системах, що мають практичне застосування. Наведено теоретичні результати, отримані на основі модельної електрохімічної системи з потенціалозалежною адсорбцією/десорбцією електроактивних частинок і попередньою хімічною реакцією у дифузійному шарі Нернста.

Ключові слова


електрохімічні коливання; динамічні нестійкості; електрокаталітичні реакції; наноструктурні матеріали; електророзчинення-пасивація-електроосадження металів; модельна N-NDR система

Повний текст:

PDF

Посилання


1. Delmonde M.V.F., Sallum L.F., Perini N., Gonzalez E.R., Schlogl R., Varela H. Electrocatalytic efficiency of the oxidation of small organic molecules under oscillatory regime. J. Phys. Chem. C. 2016. 120(39): 22365. https://doi.org/10.1021/acs.jpcc.6b06692

2. Mota A., Eiswirth M., Gonzalez E.R. Enhanced efficiency of CO-containing hydrogen electroxidation with autonomous oscillations. J. Phys. Chem. C. 2013. 117(24): 12495. https://doi.org/10.1021/jp311185c

3. Perini N., Sitta E., Angelo A., Varela H. Electrocatalytic activity under oscillatory regime: The electro-oxidation of formic acid on ordered Pt3Sn intermetallic phase. Catal. Commun. 2013. 30: 23. https://doi.org/10.1016/j.catcom.2012.10.019

 4. Lu H., Rihko-Struckmann L., Hanke-Rauschenbach R., Sundmacher K. Improved electrochemical CO removal via potential oscillations in serially connected PEM fuel cells with PtRu anodes. Electrochim. Acta. 2009. 54(4): 1184. https://doi.org/10.1016/j.electacta.2008.08.053

5. Mota-Lima A., Silva D.R., Gasparotto L.H.S., Gonzalez E.R. Stationary and damped oscillations in a direct formic acid fuel cell (DFAFC) using Pt/C. Electrochim. Acta. 2017. 235: 135. https://doi.org/10.1016/j.electacta.2017.03.056

6. Kirsch S., Hanke-Rauschenbach R., Stein B., Kraume R., Sundmacher K., The electrooxidation of H2, CO in a model PEM fuel cell: oscillations, chaos, pulses. J. Electrochem. Soc. 2013. 160(4): F436. https://doi.org/10.1149/2.002306jes

7. Ramirez-Alvareza E., Rico-Martinez R., Krischer K. Self-organized reactivity patterns during the oxidation of H2–CO mixtures on a rotating Pt ring-electrode. Electrochim. Acta. 2013. 112: 894. https://doi.org/10.1016/j.electacta.2013.05.098

8. Varela H. Spatiotemporal pattern formation during electrochemical oxidation of hydrogen on platinum. Chemistry Open. 2012. 1(4): 165. https://doi.org/10.1002/open.201200017

9. Sallum L.F., Gonzalez E.R., Feliu J.M. Potential oscillations during electro-oxidation of ethanol on platinum in alkaline media: The role of surface sites. Electrochem. Commun. 2016. 72: 83. https://doi.org/10.1016/j.elecom.2016.09.005

10. Han L., Ju H., Xu Y. Ethanol electro-oxidation: Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic oscillation. Int. J. Hydrogen Energy. 2012. 37(20): 15156. https://doi.org/10.1016/j.ijhydene.2012.08.034

11. Nogueira J.A., Arias I.K.P., Hanke-Rauschenbach R., Vidakovic-Koch T., Varela H., Sundmacher K. Autonomous voltage oscillations in a direct methanol fuel cell. Electrochim. Acta. 2016. 212: 545. https://doi.org/10.1016/j.electacta.2016.07.050

12. Zulke A.A., Varela H. The effect of temperatute on the coupled slow and fast surface dynamics of an electrochemical oscillator. Sci. Rep. 2016. 6: 24553. https://doi.org/10.1038/srep24553

13. Gojuki T., Numata Y., Mukouyama Y., Okamoto H. Hidden negative differential resistance in the oxidation of formic acid on platinum. Electrochim. Acta. 2014. 129: 142. https://doi.org/10.1016/j.electacta.2014.02.102

14. Boscheto E., Batista B.C., Lima R.B., Varela H. A surface-enhanced infrared absorption spectroscopic (SEIRAS) study of the oscillatory electro-oxidation of methanol. J. Electroanal. Chem. 2010. 642(1): 17. https://doi.org/10.1016/j.jelechem.2010.01.026

15. Seidel Y.E., Jusys Z., Lindström R.W., Stenfeldt M., Kasemo B., Krischer K. Oscillatory behavior in galvanostatic formaldehyde oxidation on nanostructured Pt/glassy carbon model electrodes. Chem. Phys. Chem. 2010. 11(7): 1405. https://doi.org/10.1002/cphc.200901029

16. Delmonde M.V.F., Nascimento M. A., Nagao R., Cantane D.A., Lima F.H.B., Varela H. Production of volatile species during the oscillatory electro-oxidation of small organic molecules. J. Phys. Chem. C. 2014. 118(31): 17699. https://doi.org/10.1021/jp5044915

17. Mukouyama Y., Kawasaki H., Hara D., Kikuchi M., Yamada Y., Nakanishi S. Alkali metal ions induced electrochemical oscillations in H2O2-H2SO4-Pt system. ECS Trans. 2015. 69(39): 37. https://doi.org/10.1149/06939.0037ecst

18. Mukouyama Y., Hara D., Kawasaki H., Kikuchi M., Yamada Y., Nakanishi S. Chaotic oscillations in H2O2-H2SO4-Pt electrochemical system. ECS Trans. 2015. 69(39): 47. https://doi.org/10.1149/06939.0047ecst

19. Mukouyama Y., Hara D., Kawasaki H., Kikuchi M., Yamada Y., Nakanishi S. Bifurcation behavior in oscillations during H2O2 reduction at Pt electrodes. ECS Trans. 2017. 75: 113. https://doi.org/10.1149/07552.0113ecst

20. Sitta E., Nagao R., Kiss I.Z., Varela H. Impact of the alkali cation on the oscillatory electro-oxidation of ethylene glycol on platinum. J. Phys. Chem. C. 2015. 119(3): 1464. https://doi.org/10.1021/jp5105505

21. Oliveira C.P., Lussari N.V., Sitta E., Varela H. Oscillatory electro-oxidation of glycerol on platinum. Electrochim. Acta. 2012. 85: 674. https://doi.org/10.1016/j.electacta.2012.08.087

22. Bi W., He Y., Cabral M.F., Varela H., Yang J., Jiang R., Gao Q. Oscillatory electro-oxidation of thiosulfate on gold. Electrochim. Acta. 2014. 133: 308. https://doi.org/10.1016/j.electacta.2014.04.055

23. Bell J.G., Wang J. Nonlinear instabilities during the electrochemical oxidation of hydroxymethanesulfinate. Electrochim. Acta. 2016. 222: 678. https://doi.org/10.1016/j.electacta.2016.11.023

24. Chen C., Ozasa K., Kitamura F., Katsumata K., Maeda M., Okada K., Matsushita N. Self-organization of TiO2 nanobamboos by anodization with deep eutectic solvent. Electrochim. Acta. 2015. 153: 409. https://doi.org/10.1016/j.electacta.2014.11.084

25. Ozkan S., Mazare A., Schmuki P. Self-induced current oscillations during anodization of Ti in LA containing DMSO electrolyte. Electrochem. Commun. 2016. 65: 18. https://doi.org/10.1016/j.elecom.2016.02.001

26. Liu H., Tao L., Shen W. Controllable current oscillation and pore morphology evolution in the anodic growth of TiO2 nanotubes. Nanotechnology. 2011. 22(15): 155603. https://doi.org/10.1088/0957-4484/22/15/155603

27. Eskhult J., Ulrich C., Björefors F., Nyholm L. Current oscillation during chronoamperometric and cyclic voltammetric measurements in alkaline Cu(II)-citrate solutions. Electrochim. Acta. 2008. 53(5): 2188. https://doi.org/10.1016/j.electacta.2007.09.032

28. Sakai S., Nakanishi S., Nakato Y. Mechanisms of oscillations and formation of nano-scale layered structures in induced co-deposition of some iron-group alloys (Ni-P, Ni-W, and Co-W), studied by an in situ electrochemical quartz crystal microbalance technique. J. Phys. Chem. B. 2006. 110(24): 11944. https://doi.org/10.1021/jp061282d

29. Nakanishi S., Sakai S.I., Nishimura K., Nakato Y. Layer-by-layer electrodeposition of copper in the presence of o-phenanthroline, caused by a new type of hidden NDR oscillation with the effective electrode surface area as the key variable. J. Phys. Chem. B. 2005. 109(40): 18846. https://doi.org/10.1021/jp0513871

30. Sakai S.I., Nakanishi S., Fukami K., Nakato Y. Oscillation-induced layer-by-layer electrodeposition producing alternate metal and metal-alloy multilayers on a nanometer scale. Chem. Lett. 2002. 31(6): 640 https://doi.org/10.1246/cl.2002.640

31. Nakanishi S., Sakai S., Nagai T., Nakato Y. Macroscopically uniform nanoperiod alloy multilayers formed by coupling of electrodeposition with current oscillations. J. Phys. Chem. B. 2005. 109(5): 1750. https://doi.org/10.1021/jp045876x

32. Kamiya K., Hashimoto K., Nakanishi S. Acceleration effect of adsorbed thiocyanate ions on electrodeposition of CuSCN, causing spontaneous electrochemical oscillation. Chem. Phys. Lett. 2012. 530: 77. https://doi.org/10.1016/j.cplett.2012.01.049

33. Sazou D., Pavlidou M., Pagitsas M. Potential oscillations induced by localized corrosion of the passivity on iron in halide-containing sulfuric acid media as a probe for a comparative study of the halide effect. J. Electroanal. Chem. 2012. 675: 54. https://doi.org/10.1016/j.jelechem.2012.04.012

34. Polmann L., Bauer G., Hartmann P., Wachter P., Donner C. Oscillatory passive active transition during the corrosion in nickel chromium layer systems. J. Solid State Electrochem. 2013. 17(2): 489. https://doi.org/10.1007/s10008-012-1949-3

35. Dobrovolska T., López-Sauri D.A., Veleva L., Krastev I. Oscillations and spatio-temporal structures during electrodeposition of AgCd alloys. Electrochim. Acta. 2012. 79: 162. https://doi.org/10.1016/j.electacta.2012.06.100

36. Krastev I., Dobrovolska T. Pattern formation during electrodeposition of alloys. J. Solid State Electrochem. 2013. 17(2): 481. https://doi.org/10.1007/s10008-012-1971-5

37. Bozzini B., Lacitignola D., Sgura I. Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation. J. Solid State Electrochem. 2013. 17(2): 467. https://doi.org/10.1007/s10008-012-1945-7

38. Bozzini B., Amati M., Gregoratti L., Lacitignola D., Sgura I., Krastev I., Dobrovolska T. Intermetallics as key to spiral formation in In-Co electrodeposition. A study based on photoelectrone microspectroscopy, mathematical modeling and numerical approximations. J. Phys. D: Appl. Phys. 2015. 48(39): 395502. https://doi.org/10.1088/0022-3727/48/39/395502

39. Nascimento M.A., Varela H. Periodicity hubs and spirals in an electrochemical oscillator. J. Solid State Electrochem. 2015. 19(11): 3287. https://doi.org/10.1007/s10008-015-2800-4

40. Potkonjak N.I., Nikolić Z., Anić S.R., Minić D.M. Electrochemical oscillations during copper electrodissolution/passivation in trifluoroacetic acid induced by current interrupt method. Corros. Sci. 2014. 83: 355. https://doi.org/10.1016/j.corsci.2014.02.034

41. Birzu A., Jia Y., Sankuratri V., Liu Y., Kiss I.Z. Spatially distributed current oscillations with electrochemical reactions in microfluidic flow cells. Chem. Phys. Chem. 2015. 16(3): 555. https://doi.org/10.1002/cphc.201402631

42. Urvolgyi M., Gaspar V., Nagy T., Kiss I Z. Quantitative dynamical relationships for the effect of rotation rate on frequency and waveform of electrochemical oscillations. Chem. Eng. Sci. 2012. 83: 56. https://doi.org/10.1016/j.ces.2011.10.073

43. Kiss I.Z., Pelster L.N., Wickramasinghe M., Yablonsky G.S. Frequency of negative differential resistance electrochemical oscillators: Theory and experiments. Phys. Chem. Chem. Phys. 2009. 11: 5720. https://doi.org/10.1039/b904650j

44. Kiss I.Z., Kazsu Z., Gaspar V. Scaling relationship for oscillating electrochemical systems: Dependence of phase diagram on electrode size and rotation rate. Phys. Chem. Chem. Phys. 2009. 11: 7669. https://doi.org/10.1039/b905295j

45. Cioffi A.G., Martin R.S., Kiss I.Z. Electrochemical oscillations of nickel electrodissolution in an epoxy-based microchip flow cell. J. Electroanal. Chem. 2011. 659(1): 92. https://doi.org/10.1016/j.jelechem.2011.05.007

46. Orlik M. Self-organization in nonlinear dynamical systems and its relation to the materials science. J. Solid State Electrochem. 2009. 13(2): 245. https://doi.org/10.1007/s10008-008-0554-y

47. Orlik M. Self-Organization in Electrochemical Systems: I General principles of self-organization. Temporal instabilities; II Spatiotemporal patterns and control of chaos. (Berlin Heidelberg: Springer-Verlag, 2012). https://doi.org/10.1007/978-3-642-27673-6

48. Strasser P., Eiswirth M., Koper M.T.M., Mechanistic classification of electrochemical oscillators - an operational experimental strategy. J. Electroanal. Chem. 1999. 478(1–2): 50. https://doi.org/10.1016/S0022-0728(99)00412-X

49. Krischer K., Mazouz N., Grauel P. Fronts, waves, and stationary patterns in electrochemical systems. Angew. Chem. Int. Ed. 2001. 40(5): 851. https://doi.org/10.1002/1521-3773(20010302)40:5<850::AID-ANIE850>3.0.CO;2-3

50. Krischer K. Spontaneous formation of spatiotemporal patterns at the electrode | electrolyte interface. J. Electroanal. Chem. 2001. 501(1–2): 1. https://doi.org/10.1016/S0022-0728(00)00490-3

51. Koper M.T.M. Non-linear phenomena in electrochemical systems. J. Chem. Soc. Faraday Trans. 1998. 94: 1369. https://doi.org/10.1039/a708897c

52. Pototskaya V.V., Gichan O.I. On stability of model electrocatalytic process with Frumkin adsorption isotherm occurring on spherical electrode. Russ. J. Electrochem. 2012. 48(2): 154. https://doi.org/10.1134/S1023193512020140

53. Gichan O.I. Peculiarities of the Hopf instability onset on a charged interface of planar, cylindrical, and spherical forms. Dopovidi NAN Ukraine. 2013. 11: 67. [in Ukrainian].

54. Gichan O.I., Pototskaya V.V. Bulk concentration and dynamic stability of a model electrochemical system with a preceding chemical reaction. Electrochim. Acta. 2013. 112: 957. https://doi.org/10.1016/j.electacta.2013.07.049

55. Gichan O.I., Pototskaya V.V. Can a form of electrode/electrolyte interface change the ranges of dynamic instabilities? Bulgarian Chemical Communications. 2016. 48(B): 7.

56. Gichan O.I. Dynamic instabilities on a charged boundary: influence of mass transfer. Dopovidi NAN Ukraine. 2016. 10: 47. [in Ukrainian].

57. Pototskaya V.V., Gichan O.I. Role of ohmic losses in appearance of dynamic instabilities in model electrochemical system with cylindrical electrode under potentiostatic conditions. Russ. J. Electrochem. 2014. 50(11): 1009. [in Ukrainian]. https://doi.org/10.1134/S1023193514110081

58. Gichan O.I. Capacitance of electrical double layer and dynamic instabilities. Him. Fiz. Tehnol. Poverhni. 2015. 6(4): 449. [in Ukrainian]. https://doi.org/10.15407/hftp06.04.449

59. Koper M.T.M., Sluyters J.H. Instabilities and oscillations in simple models of electrocatalytic surface reactions. J. Electroanal. Chem. 1994. 371(1–2): 149. https://doi.org/10.1016/0022-0728(93)03248-N

60. Koper M.T.M. Stability study and categorization of electrochemical oscillations by impedance spectroscopy. J. Electroanal. Chem. 1996. 409(1–2): 175. https://doi.org/10.1016/0022-0728(95)04391-8

61. Berthier F., Diard J.P., Montella C. Hopf bifurcation and sign of the transfer resistance. Electrochim. Acta. 1999. 44(14): 2397. https://doi.org/10.1016/S0013-4686(98)00370-3

62. Naito M., Tanaka N., Okamoto H. General relation between complex impedance and linear stability in electrochemical systems. J. Chem. Phys. 1999. 111: 9908. https://doi.org/10.1063/1.480345

63. Sadkowski A. Small signal (local) analysis of electrocatalytic reaction. Pole-zero approach. J. Electroanal. Chem. 1999. 465(2): 119. https://doi.org/10.1016/S0022-0728(99)00067-4

64. Zamel N., Hanke-Rauschenbach R., Kirsch S., Bhattarai A., Gerteisen D. Relating the N-shaped polarization curve of a PEM fuel cell to a local oxygen starvation and hydrogen evolution. Int. J. Hydrogen Energy. 2013. 38(35): 15318. https://doi.org/10.1016/j.ijhydene.2013.09.130

65. Song H., Qiu X., Li X., Li F., Zhu W., Chen L. TiO2 nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media. J. Power Sources. 2007. 170(1): 50. https://doi.org/10.1016/j.jpowsour.2007.04.017

66. Freitas R.G., Pereira E.C. Giant multilayer electrocatalytic effect investigation on Pt/Bi/Pt nanostructured electrodes towards CO and methanol electrooxidation. Electrochim. Acta. 2010. 55(26): 7622. https://doi.org/10.1016/j.electacta.2009.12.014

67. Michel R., Montella C. Diffusion–convection impedance using an efficient analytical approximation of the mass transfer function for a rotating disk. J. Electroanal. Chem. 2015. 736: 139. https://doi.org/10.1016/j.jelechem.2014.11.009

68. Pototskaya V.V., Gichan O.I. On the theory of the generalized Gerischer impedance for an electrode with modeling roughness. Electrochim. Acta. 2017. 235: 583. https://doi.org/10.1016/j.electacta.2017.03.091




DOI: https://doi.org/10.15407/hftp08.03.225

Copyright (©) 2017 O. I. Gichan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.