Chemistry, Physics and Technology of Surface, 2017, 8 (3), 333-345.

Drying of droplets of aqueous suspensions of multiwalled carbon nanotubes in the presence of cationic surfactant CTAB



DOI: https://doi.org/10.15407/hftp08.03.333

V. A. Gigiberiya, L. A. Bulavin, O. S. Lytvyn, M. I. Lebovka

Abstract


The effect of cetyltrimethylammonium bromide (CTAB) on drying patterns of aqueous suspension of multiwalled carbon nanotubes (NTs) has been studied. The sessile droplets were dried on glass substrates in an air bath chamber (295±0.1 K) with fixation of changes in transparency using an optical microscope CAM-03 (Sigeta, China). The relative humidity in the chamber was of 40 ± 5%. The concentrations of NTs and CTAB were changed in the ranges of Cn = 0.005-0.1% and Cs = 0.0-0.1%, respectively. The final drying patterns were tested using analysis of radial distribution of optical transparency, and the topographies of patterns were investigated using an atomic force microscope (AFM) NanoScope IIIa Dimension 3000 (Digital Instruments, Bruker, USA). In bulk aqueous suspensions addition of CTAB improved dispersion of NTs and at x=Cs/Cn >=0.1 the size of NT aggregates progressively decreased. The formation of drying patterns with four different morphological types was observed as dependent on the concentrations of NTs and CTAB. The increase of CTAB concentration resulted in increase of the thickness of a “coffee ring”. For different concentrations of NTs the similar correlations in the behaviour of total transparency of drying pattern and thickness of the "coffee ring" layer were observed. The data obtained using the AFM technique indicated the possibility of formation of quite thick bundles of NTs located inside the "coffee ring" layer.

Keywords


drying; aqueous suspensions; nanotubes; CTAB

Full Text:

PDF (Українська)

References


1. Zeng H., Kristiansen K., Wang P., Bergli J., Israelachvili J. Surface-Induced Patterns from Evaporating Droplets of Aqueous Carbon Nanotube Dispersions. Langmuir. 2011. 27(11): 7163. https://doi.org/10.1021/la200476n

2. Kuzmenko A.P., Thet P.N., Myo M.T., Chan N.A., Dobromysilov M.B. Self-assembly and Self-organization Processes of Carbon Nanotubes in the Colloidal Systems. J. Nano-Electron Phys. 2015. 7(4): 4011.

3. Zhong X, Crivoi A, Duan F. Sessile nanofluid droplet drying. Adv. Colloid Interface Sci. 2015. 217: 13. https://doi.org/10.1016/j.cis.2014.12.003

4. Yildirim Erbil H. Control of stain geometry by drop evaporation of surfactant containing dispersions. Adv. Colloid Interface Sci. 2014. 222: 275. https://doi.org/10.1016/j.cis.2014.08.004

5. Dugyala V.R, Basavaraj M.G. Evaporation of Sessile Drops Containing Colloidal Rods: Coffee-Ring and Order-Disorder Transition. J. Phys. Chem. B. 2015. 119(9): 3860. https://doi.org/10.1021/jp511611v

6. Lebovka N.I., Vygornitskii N.V., Gigiberiya V.A., Tarasevich Y.Y. Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods. Phys. Rev. E. 2016. 94(6): 62803. https://doi.org/10.1103/PhysRevE.94.062803

7. Lebovka N.I., Tarasevich Y.I., Gigiberiya V.A., Vygornitskii N.V. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice. Phys. Rev. E. 2017. 95(5): 52130. https://doi.org/10.1103/PhysRevE.95.052130

8. Bandodkar A.J., Jeerapan I., You J.-M., Nu-ez-Flores R., Wang J. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability. Nano Lett. 2015. 16(1): 721. https://doi.org/10.1021/acs.nanolett.5b04549

9. Tai Y.-L., Yang Z.-G. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT: PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir. 2015. 31(48): 13257. https://doi.org/10.1021/acs.langmuir.5b03449

10. Omidi M., Haghiralsadat F., Oroojalian F., Azhdari M. Fabrication of paper-based load sensor by using the multi-walled carbon nanotubes ink. In: 10th IEEE International Conference on Networking, Sensing and Control (Apr. 10, 2013, Evry, France). P. 221. https://doi.org/10.1109/ICNSC.2013.6548740

11. Vaisman L., Wagner H.D., Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 2006. 128–130: 37. https://doi.org/10.1016/j.cis.2006.11.007

12. Shin J.-Y., Premkumar T., Geckeler K.E. Dispersion of Single-Walled Carbon Nanotubes by Using Surfactants: Are the Type and Concentration Important? Chem. Eur. J. 2008. 14(20): 6044. https://doi.org/10.1002/chem.200800357

13. Zhang S., Lan Q., Liu Q., Xu J., Sun D. Aqueous foams stabilized by Laponite and CTAB. Colloids Surf. A. 2008. 317: 406. https://doi.org/10.1016/j.colsurfa.2007.11.010 

14. Devre R.D., Budhlall B.M., Barry C.F. Enhancing the Colloidal Stability and Electrical Conductivity of Single-Walled Carbon Nanotubes Dispersed in Water. Macromol. Chem. Phys. 2016. 217(5): 683. https://doi.org/10.1002/macp.201500408

15. Xiao Q., Wang P.-H., Ji L.-L. Dispersion of carbon nanotubes in aqueous solution with cationic surfactant CTAB. J. Inorg. Mater. 2007. 22(6): 1122.

16. de la Cruz E.F., Zheng Y., Torres E., Li W., Song W., Burugapalli K. Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int. J. Electrochem. Sci. 2012. 7: 3577.

17. Manilo M.V., Lebovka N., Barany S. Combined effect of cetyltrimethylammonium bromide and laponite platelets on colloidal stability of carbon nanotubes in aqueous suspensions. J. Mol. Liq. 2017. 235: 104. https://doi.org/10.1016/j.molliq.2017.01.090

18. Deegan R.D., Bakajin O., Dupont T.F., Huber G., Nagel S.R., Witten T.A. Contact line deposits in an evaporating drop. Phys. Rev. E. 2000. 62(1): 756. https://doi.org/10.1103/PhysRevE.62.756

19. Deegan R. Pattern formation in drying drops. Phys Rev E. 2000. 61(1): 475. https://doi.org/10.1103/PhysRevE.61.475

20. Deegan R.D, Bakajin O, Dupont T.F, Huber G, Nagel S.R, Witten T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997. 389(6653): 827. https://doi.org/10.1038/39827

21. Erbil H.Y. Evaporation of pure liquid sessile and spherical suspended drops: A review. Adv. Colloid Interface Sci. 2012. 170(1–2): 67. https://doi.org/10.1016/j.cis.2011.12.006

22. Kim J.-H., Park S.-B., Kim J.H., Zin W.-C. Polymer Transports Inside Evaporating Water Droplets at Various Substrate Temperatures. J. Phys. Chem. C. 2011. 115(11): 15375. https://doi.org/10.1021/jp202429p

23. Erbil H.Y., Mc Hale G., Newton M.I. Drop evaporation on solid surfaces: Constant contact angle mode. Langmuir. 2002. 18(7): 2636. https://doi.org/10.1021/la011470p

24. Fujikawa S., Yano T., Watanabe M. Vapor-liquid interfaces, bubbles and droplets: fundamentals and applications. ( Berlin Heidelberg: Springer-Verlag, 2011). https://doi.org/10.1007/978-3-642-18038-5

25. Bardakov R.N., Chashechkin Y.D., Shabalin V.V. Hydrodynamics of a drying multicomponent liquid droplet. Fluid Dynamics. 2010. 45(5): 803. https://doi.org/10.1134/S0015462810050133

26. Yunker P.J., Still T., Lohr M.A., Yodh A.G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature. 2011. 476(7360): 308. https://doi.org/10.1038/nature10344

27. Crivoi A., Duan F. Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets. Phys. Rev. E. 2013. 87(4): 42303. https://doi.org/10.1103/PhysRevE.87.042303

28. Crivoi A., Duan F. Effect of Surfactant on the Drying Patterns of Graphite Nanofluid Droplets. J. Phys. Chem. B. 2013. 117(19): 1. https://doi.org/10.1021/jp401751z

29. Zhong X., Duan F. Surfactant-Adsorption-Induced Initial Depinning Behavior in Evaporating Water and Nanofluid Sessile Droplets. Langmuir. 2015. 31(19): 5291. https://doi.org/10.1021/acs.langmuir.5b00288

30. Soboleva O.A, Summ B.D. The kinetics of dewetting of hydrophobic surfaces during the evaporation of surfactant solution drops. Colloid J. 2003. 65(1): 89–93. https://doi.org/10.1023/A:1022379210765

31. Monteux C., Lequeux F. Packing and sorting colloids at the contact line of a drying drop. Langmuir. 2011. 27(6): 2917. https://doi.org/10.1021/la104055j

32. Velikov K.P., Christova C.G., Dullens R.P.A., van Blaaderen A. Layer-by-Layer Growth of Binary Colloidal Crystals. Science. 2002. 296(5565): 106. https://doi.org/10.1126/science.1067141

33. Park J., Moon J. Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir. 2006. 22(8): 3506. https://doi.org/10.1021/la053450j

34. Zhang S., Li Q., Kinloch I.A., Windle A.H. Ordering in a droplet of an aqueous suspension of single-wall carbon nanotubes on a solid substrate. Langmuir. 2010. 26(3): 2107. https://doi.org/10.1021/la902642f

35. Huang L., Cui X., Dukovic G., O Brien S.P. Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions. Nanotechnology. 2004. 15(11): 1450. https://doi.org/10.1088/0957-4484/15/11/012

36. Li Q., Zhu Y.T., Kinloch I.A., Windle A.H. Self-organization of carbon nanotubes in evaporating droplets. J. Phys. Chem. B. 2006. 110(28): 13926. https://doi.org/10.1021/jp061554c

37. Beyer S.T., Walus K. Controlled orientation and alignment in films of single-walled carbon nanotubes using inkjet printing. Langmuir. 2012. 28(23): 8753. https://doi.org/10.1021/la300770b

38. Yanchenko A.V, Melezhyk Y.I., Sementsov V.V. Synthesis off ine carbon nanotubes codeposited at metal licoxide catalysts. Russ. J. Appl. Chem. 2005. 78(6): 924.

39. Tyrode E., Rutland M.W., Bain C.D. Adsorption of CTAB on hydrophilic silica studied by linear and nonlinear optical spectroscopy. J. Am. Chem. Soc. 2008. 130(51): 17434. https://doi.org/10.1021/ja805169z

40. Janzen J., Kraus G. Specific surface area measurements on carbon black. Rubber. Chem. Technol. 1971. 44(5): 1287. https://doi.org/10.5254/1.3544809

41. Goncharuk A.I., Lebovka N.I., Lisetski L.N., Minenko S.S. Aggregation, percolation and phase transitions in nematic liquid crystal EBBA doped with carbon nanotubes. J. Phys. D. 2009. 42(16): 165411. https://doi.org/10.1088/0022-3727/42/16/165411

42. Hilding J., Grulke E.A., Zhang Z.G., Lockwood F. Dispersion of Carbon Nanotubes in Liquids. J. Dispersion. Sci. Technol. 2007. 24(1): 1. https://doi.org/10.1081/DIS-120017941

43. Hennrich F., Krupke R., Arnold K., Stütz J.A.R., Lebedkin S., Koch T., Schimmel T., Kappes M.M. The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J. Phys. Chem. 2007. 111(8): 1932. https://doi.org/10.1021/jp065262n

44. Strano M.S., Moore V.C., Miller M.K., Allen M.J., Haroz E.H., Kittrell C., Hauge R.H., Smalley R.E.The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2015. 3(1–2): 81.

45. Rastogi R., Kaushal R., Tripathi S.K., Sharma A.L., Kaur I., Bharadwaj LM. Comparative study of carbon nanotube dispersion using surfactants. J. Colloid Interface Sci. 2008. 328(2): 421. https://doi.org/10.1016/j.jcis.2008.09.015




DOI: https://doi.org/10.15407/hftp08.03.333

Copyright (©) 2017 V. A. Gigiberiya, L. A. Bulavin, O. S. Lytvyn, M. I. Lebovka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.