Quantum-chemically computed integral characteristics of complex nanomaterials
DOI: https://doi.org/10.15407/hftp12.03.157
Abstract
Development of theoretical tools to analyze electronic structure of complex nanomaterials depending on features of spatial and chemical organizations of different phases is of interest from both practical and theoretical points of view. Therefore, in this work, an approach based on computations of the atomic charge distribution functions (CDF) in parallel to calculations of the distribution functions of the chemical shifts (SDF) of protons is developed to be applied to a set of complex oxide and carbon nanomaterials. Binary nanooxides (alumina/silica, titania/silica), 3d-metal-doped anatase, activated carbon, carbon nanotube, fullerene C60, graphene oxide, and N-doped Kagome graphene are considered here as representatives of different classes of nanomaterials. The analyses of the CDF and SDF as nonlocal characteristics of certain kinds of atoms in complex systems provide a deeper insight into electronic structure features depending on composition of the materials, guest phase-doped host phase at various amounts of dopants, structure of O- and OH-containing surface sites, amounts and organization of adsorbed water, formation of neutral and charged surface functionalities, bonding of solvated ions, etc. The CDF of metal and hydrogen atoms (electron-donors) are more sensitive to the mentioned factors than the CDF of O, N, and C atoms (electron acceptors) in various systems. As a whole, the use of the CDF and SDF in parallel expands the tool possibility in detailed analysis of the structural and interfacial effects in dried and wetted complex nanomaterials.
Keywords
References
Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).
Legrand A.P. (Ed.) The Surface Properties of Silicas. (New York: Wiley, 1998).
Bergna H.E., Roberts W.O. (Eds.) Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006). https://doi.org/10.1201/9781420028706
Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th edition. (New York: Wiley, 1997).
Tapia O., Bertrán J. (Eds.) Solvent Effects and Chemical Reactivity. (New York: Kluwer Academic Publishers, 2000).
Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3
Henderson M.A. Interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002. 46(1-8): 1. https://doi.org/10.1016/S0167-5729(01)00020-6
Birdi K.S. (Ed.) Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/b10154
Al-Abadleh H.A., Grassian V.H. Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 2003. 52(3-4): 63. https://doi.org/10.1016/j.surfrep.2003.09.001
Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pakhlov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003
Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11(26): 3.
Guo Z., Liu B., Zhang Q., Deng W., Wang Y., Yang Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014. 43: 3480. https://doi.org/10.1039/c3cs60282f
Canuto S. (Ed.) Solvation Effects on Molecules and Biomolecules. Computational Methods and Applications. (Dordrecht: Springer, 2008). https://doi.org/10.1007/978-1-4020-8270-2
Advani S.G. Processing and Properties of Nanocomposites. (Singapore: Word Scientific Publising, 2007). https://doi.org/10.1142/6317
Stojanovic B.D. (Ed.), Magnetic, Ferroelectric, and Multiferroic Metal Oxides. (Amsterdam: Elsevier, 2018).
Pandikumar A., Rameshkumar P. (Eds.) Graphene-Based Electrochemical Sensors for Biomolecules. (Amsterdam: Elsevier, 2019).
Schleyer P.v.R. (Ed.) Encyclopedia of Computational Chemistry. (New York: John Wiley & Sons, 1998).
Dykstra C.E., Frenking G., Kim K.S., Scuseria G.E. (Eds.) Theory and Applications of Computational Chemistry, the First Forty Years. (Amsterdam: Elsevier, 2005).
Cramer C.J. Essentials of computational chemistry: theories and models. Second edn. (Chichester, UK: John Wiley & Sons, Ltd, 2008).
Helgaker T., Jorgensen P., Olsen J. Molecular Electronic Structure Theory. (New York: John Wiley & Sons, 2014).
Martin R.M., Reining L., Ceperley D.M. Interacting Electrons: Theory and Computational Approaches. (Cambridge, UK: Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781139050807
Engel E., Dreizler R.M. Density Functional Theory: An Advanced Course. (Berlin: Springer, 2013).
Yang K., Zheng J., Zhao Y., Truhlar D.G. Tests of the RPBE, revPBE, τ-HCTHhyb, ωB97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. J. Chem. Phys. 2010. 132(16): 164117. https://doi.org/10.1063/1.3382342
Becke A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014. 140(18): 18A301. https://doi.org/10.1063/1.4869598
Marenich A.V., Cramer C.J., Truhlar D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009. 113(18): 6378. https://doi.org/10.1021/jp810292n
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.01. (Wallingford CT:Gaussian, Inc., 2013).
Barca G.M.J., Bertoni C., Carrington L., Datta D., De Silva N., Deustua J.E., Fedorov D.G., Gour J.R., Gunina A.O., Guidez E., Harville T., Irle S., Ivanic J., Kowalski K., Leang S.S., Li H., Li W., Lutz J.J., Magoulas I., Mato J., Mironov V., Nakata H., Pham B.Q., Piecuch P., Poole D., Pruitt S.R., Rendell A.P., Roskop L.B., Ruedenberg K. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020. 152(15): 154102. https://doi.org/10.1063/5.0005188
Stewart J.J.P. MOPAC2016. Stewart Computational Chemistry. web: HTTP://OpenMOPAC.net. February 21, 2021.
Stewart J.J.P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Mod. 2013. 19(1): 1. https://doi.org/10.1007/s00894-012-1667-x
Gun'ko V.M. Modeling of interfacial behavior of water and organics. J. Theor. Comput. Chem. 2013. 12(07): 1350059. https://doi.org/10.1142/S0219633613500594
Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413
Gun'ko V.M. Effects of methods and basis sets on calculation results using various solvation models. Him. Fiz. Tehnol. Poverhni. 2018. 9(1): 3. https://doi.org/10.15407/hftp09.01.003
Gun'ko V.M. Charge distribution functions for characterization of complex systems. Him. Fiz. Tehnol. Poverhni. 2021. 12(1): 3. https://doi.org/10.15407/hftp12.01.003
Gun'ko V.M., Turov V.V. Structure of hydrogen bonds and 1H NMR spectra of water at the interface of oxides. Langmuir. 1999. 15(19): 6405. https://doi.org/10.1021/la9809372
Pawlak R., Liu X., Ninova S., D'astolfo P., Drechsel C., Liu J.-C, Häner R., Decurtins S., Aschauer U., Liu S.-X., Meyer E. On‐surface synthesis of nitrogen‐doped Kagome graphene. Angew. Chem. Int. Ed. 2021. 60(15): 8370. https://doi.org/10.1002/anie.202016469
Gun'ko V.M. Electronic structure of anatase doped by metals calculated using translational boundary conditions and cluster approach. Him. Fiz. Tehnol. Poverhni. 2014. 5(2): 119.
Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995. 95(3): 735. https://doi.org/10.1021/cr00035a013
Fujishima A., Hashimoto K., Watanabe T. TiO2 Photocatalysis Fundaments and Applications. (Tokyo: University of Tokyo, BKC, Inc., 1999).
Emori M., Sugita M., Ozawa K., Sakama H. Electronic structure of epitaxial anatase TiO2 films: Angle-resolved photoelectron spectroscopy study. Phys. Rev. B. 2012. 85: 035129. https://doi.org/10.1103/PhysRevB.85.035129
Umebayashi T., Yamaki T., Itoh H., Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solid. 2002. 63(10): 1909. https://doi.org/10.1016/S0022-3697(02)00177-4
Wang Y., Doren D.J. Electronic structures of V-doped anatase TiO2. Solid State Communications. 2005. 136(3): 142. https://doi.org/10.1016/j.ssc.2005.07.014
Wu H.-C., Li S.-H., Lin S.-W. Effect of Fe concentration on Fe-doped anatase TiO2 from GGA + U calculations. Int. J. Photoenergy. 2012. 2012: 823498. https://doi.org/10.1155/2012/823498
Du Y., Wang Z., Chen H., Wang H.-Y., Liu G., Weng Y. Effect of trap states on photocatalytic properties of boron-doped anatase TiO2 microspheres studied by time-resolved infrared spectroscopy. Phys. Chem. Chem. Phys. 2019. 21(8): 4349. https://doi.org/10.1039/C8CP06109B
Gun'koV.M. Atomic charge distribution functions as a tool to analyze electronic structure of molecular and cluster systems. Int. J. Quantum Chem. 2021. 121(14): е26665. https://doi.org/10.1002/qua.26665
DOI: https://doi.org/10.15407/hftp12.03.157
Copyright (©) 2021 V. M. Gun'ko
This work is licensed under a Creative Commons Attribution 4.0 International License.