Хімія, фізика та технологія поверхні, 2013, 4 (1), 105-112.

Золь-гель синтез та дослідження мезопористого діоксиду титану, модифікованого перехідними металами (Co, Ni, Mn, Cu)



DOI: https://doi.org/10.15407/hftp04.01.105

O. O. Kelyp, I. S. Petrik, V. S. Vorobets, N. P. Smirnova, G. Ya. Kolbasov

Анотація


Нанорозмірні мезопористі порошки і плівки діоксиду титану, модифікованого іонами Co2+, Ni2+, Mn3+ та Cu2+, синтезовані темплатним золь-гель методом та охарактеризовані за допомогою адсорбційних методів, оптичної спектроскопії і РФА. Після термообробки при 400°C в дифрактограмах є лише рефлекси нанокристалічної фази анатазу (8–20 нм). Характеристичні смуги поглинання іонів Co2+ та Co3+ в октаедричному та тетраедричному оточенні в спектрах дифузного відбиття свідчать про формування фази шпінелі Co3O4; кристалізація порошків M/TiO2 після термообробки при 650°C приводить до появи смуг поглинання, характерних для іонів Ni2+ або Mn3+ в октаедричному оточенні. Прямими фотоелектрохімічними вимірами встановлені ширина забороненої зони та положення потенціалів пласких зон. Допування перехідними металами приводить до підвищення квантового виходу фотоструму в порівнянні з немодифікованими плівками діоксиду титану.

Повний текст:

PDF (English)

Посилання


1. Aroutiounian V.M., Arakelyan V.M., Shahnazaryan G.E. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy. 2005. 78(5): 581. https://doi.org/10.1016/j.solener.2004.02.002

2. Grätzel M. Photovoltaic and photoelectro-chemical conversion of solar energy. Philosophical. Trans. Royal Soc. A. 2007. 365(1853): 993.

3. Zhang X., Li X., Wu J., Yang R., Tian L., Zhang Z. Simple sol-gel route to synthesis of mesoporous TiO2. J. Sol-Gel Sci. Technol. 2009. 51(1): 1. https://doi.org/10.1007/s10971-009-1984-4

4. Zhang W., Li R., He H. Synthesis of mesoporous TiO2-Al2O3 binary oxides photocatalyst by sol-gel method using PEG1000 as template. Int. J. Photoenergy. 2012. Article ID 108175: 1.

5. Eremenko A.M., Smirnova N.P., Petrk I.S., Hnatiuk Yu.I., Krylova G.V. Syntesis and properties of porous nanostructured films active in the ecological photocatalysis. Nanosystems, Nanomaterials, Nanotechnologies. 2004. 2(2): 477. [in Ukrainian].

6. Gnatyuk Yu., Eremenko A., Smirnova N., Ilyin V. Design and photocatalytic activity of mesoporous TiO2/ZrO2 thin films. J. Ads. Sci. Technol. 2005. 23(6): 497.

7. Smirnova N., Gnatyuk Yu., Eremenko A., Kolbasov G., Vorobetz V., Kolbasova I., Linyucheva O. Photoelectrochemical characterization and photocatalytic properties of mesoporous TiO2/ZrO2 films. Int. J. Photoenergy. 2006. 8: 1. https://doi.org/10.1155/IJP/2006/85469

8. Krylova G.V., Gnatyuk Yu.I., Eremenko A.M., Smirnova N.P., Gun'ko V.M. Ag nanoparticles deposited onto silica, titania and zirconia mesoporous films synthesized by sol-gel template method. J. Sol-Gel Sci. Technol. 2009. 50(2): 216. https://doi.org/10.1007/s10971-009-1954-x

9. López R., Gómez R., Lianos M.E. Photophysical and photocatalytical properties of nanosized copper-doped titania sol-gel catalysts. Catal. Today. 2009. 148(1–2): 103. https://doi.org/10.1016/j.cattod.2009.04.001

10. Ghasemi S., Rahimnejad S., Setayesh R., Rohani S.S., Gholami M.R. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J. Hazard. Mater. 2009. 172(2–3): 1573. https://doi.org/10.1016/j.jhazmat.2009.08.029

11. Petrik I., Kelyp O., Vorobets V., Smirnova N., Frolova O., Oranska O., Kolbasov G., Eremenko A. Synthesis, optical, electro- and photocatalytic properties of nanosized TiO2- films modified with transition metal (Co, Ni, Mn, Cu) ions. Him. Fiz. Tehnol. Poverhni. 2011. 2(4): 436. [in Ukrainian].

12. Xu J.P., Shi S.B., Li L., Wang J.F., Lv L.Y., Zhang F.M., Du Y.W. Effect of manganese ions concentration on the anatase–rutile phase transformation of TiO2 films. J. Phys. Chem. Solids. 2009. 70(3–4): 511. https://doi.org/10.1016/j.jpcs.2008.06.113

13. Rocquefelte X., Goubin F., Koo H.-J., Whangbo M.-H., Jobic S. Investigation of the origin of the empirical relationship between refractive index and density on the basis of first principles calculations for the refractive indices of various TiO2 phases. Inorg. Chem. 2004. 43(7): 2246. https://doi.org/10.1021/ic035383r

14. Gomathi D.L., Nagaraju K., Narasimha M.B., Girish K.S. Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of aniline blue under UV/solar light. J. Mol. Catal. A: Chem. 2010. 328(1–2): 44.

15. Dong Y.L., Won J.L., Jae Sung S., Koh J.H., Kim Y.S. Electronic surface state of TiO2 electrode doped with transition metals, studied with cluster model and DV-Xα method. Comput. Mater. Sci. 2004. 30(3–4): 383.

16. Umebayashi T., Yamaki T., Itoh H., Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids. 2002. 63(10): 1909. https://doi.org/10.1016/S0022-3697(02)00177-4

17. Choi W., Termin A., Hoffmann M.R. The role of metal ion dopants in quantum-sized TiO2: correlation between. photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994. 98(51): 13669. https://doi.org/10.1021/j100102a038

18. Oleksenko L., Lutsenko L. Co-containing systems based on zeolites ZSM-5, erionite, Al2O3 and SiO2 in CO oxidation. Him. Fiz. Tehnol. Poverhni. 2004. 10: 132. [in Ukrainian].

19. Liver A.B.P. Inorganic Electronic Spectroscopy. Part 2. (Amsterdam: Elsevier, 1984).

20. Kosova N.V., Devyatkina E.T., Anufrienko V.F., Vasenin N.T., Vosel' S.V., Larina T.V. Using of mechanical activation in the rechargeable lithium batteries creation. Chem. Sustainable Development. 2002. 10: 127. [in Russian].

21. Roy S., Ganguli D. Optical properties of Ni2+-doped silica and silicate gel monoliths. J. Non-Cryst. Solids. 1992. 151(3): 203. https://doi.org/10.1016/0022-3093(92)90030-N

22. Sjoerd K.W., Poels E.K., Bliek A. Weckhuysen B.M., Schoonheydt R.A. Characterization of Al2O3-supported manganese oxides by electron spin resonance and diffuse reflectance spectroscopy. J. Phys. Chem. B. 1997. 101(3): 309. https://doi.org/10.1021/jp962343i

23. Bezmaternyh L., Poceluiko A., Yerlykova E., Edelman I. Optical absorbance of copper metaborate CuB2O4. Solid State Physics. 2001. 43(2): 297. [in Russian].

24. Linsebigler A.L., Lu G.Q., Yates J.T. Photocatalysis on TiO2 surfaces: principles, mechanism and selected results. Chem. Rev. 1995. 95(3): 735. https://doi.org/10.1021/cr00035a013 25. Gurevich Yu., Pleskon Yu. Photoelectrochemistry of the semiconductors. (Moscow: Nauka, 1983). [in Russian].

26. Kolbasov G., Gorodyskyi A. Photoinduced charge-transfer processes in semiconductor-electrolyte systems. (Kyiv: Naukova dumka, 1993). [in Russian].

27. Hamilton J.W.J., Byrne J.A., McCullagh C., Dunlop P.S.M. Electrochemical investigation of doped titanium dioxide. J. Photoenergy. 2008. 2008(Article ID 631597): 1.

28. Sakthivel S., Kish H. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. Chem. Phys. 2003. 4(5): 487. https://doi.org/10.1002/cphc.200200554

29. Grätzel M., Gilbert S.E., Klemenz C., Scheel H.J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 1996. 118(28): 6716. https://doi.org/10.1021/ja954172l

30. Kelyp O., Vorobets V., Kolbasov G., Smirnova N. Electro- and photocatalytic properties of 3d-metals modified TiO2-films. Visnyk Lviv Univ. Ser. Chem. 2012. 53: 392. [in Ukrainian].




DOI: https://doi.org/10.15407/hftp04.01.105

Copyright (©) 2013 O. O. Kelyp, I. S. Petrik, V. S. Vorobets, N. P. Smirnova, G. Ya. Kolbasov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.