Chemistry, Physics and Technology of Surface, 2017, 8 (3), 271-288.

Effect of mechanochemical modification on properties of powder tin(IV) oxide and oxohydroxide



DOI: https://doi.org/10.15407/hftp08.03.271

S. V. Khalameida, M. M. Samsonenko, J. Skubiszewska-Zięba, O. I. Zakutevskyy, L. S. Kuznetsova

Abstract


We studied mechanochemical modification of low-dispersed SnO2 and high-dispersed SnO(OH)2 powders with specific surface area 6 and 198 m2/g. They are perspective materials for photocatalysis and adsorption. The aims of work were: the study of crystal, porous, and electronic structure of obtained products, evaluation of their photocatalytic activity under visible light in the process of dyes degradation. The mechanochemical treatment of powders carried out in air and water at 300-850 rpm using a planetary ball mill Pulverisette-7 (German, «Fritsch»). We used XRD and DTA-TG analysis, UV-Vis and FTIR spectroscopy, adsorption-desorption of nitrogen for characterization of initial and modified samples. We have established that porous structures of investigated samples of powders are changed under milling. The initial high-dispersed powder is porous and poorly crystalline. Its specific surface area decreases after milling: from 198 m2/g for initial sample to 130 and 187 m2/g for samples milled in air and water at 850 rpm, respectively. On the contrary, low-dispersed powder is almost non-porous and well crystallized. Its specific surface area increases about 2 times, but the degree of crystallinity reduces as a result of milling. In general, milling of both powders in water leads to formation of meso-macroporous structure. The shift of band gap and increase in adsorption of visible light occurs after modification of high-dispersed sample. This may be a result of changes in the phase and chemical composition, the size of the crystallites, the degree of hydroxylation of the surface, as well as the formation of defects in the structure. On the other hand, the narrowing of band gap occurs after mechanochemical treatment of low-dispersed sample. As a result, photocatalytic activity in the process of rhodamine B degradation under the action of visible light for all modified powders significantly increases. Maximal activity showed high-dispersed sample milled in air and water at 850 rpm. The degradation rate constants Kd are 7.3•10-5 and 6.4•10-5 s-1, respectively. The results of the measurement of total organic carbon content in solution after degradation indicate that not only the discoloration of the solution occurs, but also the partial mineralization of the rhodamine. Thus, the degree of mineralization is up to 75 %.

Keywords


tin(IV) oxide and oxo-hydroxide; mechanochemical treatment; porous structure; rhodamine B; photocatalytic activity

Full Text:

PDF (Українська)

References


1. Misak N.Z., Shabana El-S.I., Mikhail E.M. Ghoneimy H.F. Kinetics of isotopic exchange and mechanism of sorption of CO(II) on hydrous stannic oxide. Reactive Polymers. 1992. 16(3): 261. https://doi.org/10.1016/0923-1137(92)90261-Y

2. Nilchi A., Dehaghan T. Sh. Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination. 2013. 321: 67. https://doi.org/10.1016/j.desal.2012.06.022

3. Sergent N., Gélin P., Périer-Camby L., Praliaud H., Thomas G. Preparation and characterisation of high surface area stannic oxides: structural, textural and semiconducting properties. Sens. Actuators. B. 2002. 84(2–3):176. https://doi.org/10.1016/S0925-4005(02)00022-9

4. Adnan R., Razana N. A., Rahman I.A. Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Sol-Gel Method as a Catalyst for the Hydrogenation of Styrene. J. Chin. Chem. Soc. 2010. 57(2): 222. https://doi.org/10.1002/jccs.201000034

5. Zhao Q., Zhang Z., Dong T., Xie Y. Facile Synthesis and Catalytic Property of Porous Tin Dioxide Nanostructures. J. Phys. Chem. B. 2006. 110(31): 15152. https://doi.org/10.1021/jp0620522

6. Solrıs-Casados D., Vigueras-Santiago E., Hernrandez-Lopez, Camacho-Lopez M. A. Characterization and Photocatalytic Performance of Tin Oxide. Ind. Eng. Chem. Res. 2009. 48(3): 1249.

7. Yuan H., Xu J. Preparation, Characterization and Photocatalytic Activity of Nanometer SnO2. International Journal of Chemical Engineering and Applications. 2010. 1(3): 241. https://doi.org/10.7763/IJCEA.2010.V1.41

8. Kim J., Lee J.S., Kang M. Synthesis of Nanoporous Structured SnO2 and its Photocatalytic Ability for Bisphenol A Destruction. Bull. Korean Chem. Soc. 2011. 32(5): 1715. https://doi.org/10.5012/bkcs.2011.32.5.1715

9. He Z., Zhou J. Synthesis, Characterization, and Activity of Tin Oxide Nanoparticles: Influence of Solvothermal Time on Photocatalytic Degradation of Rhodamine B. Modern Research in Catalysis. 2013. 2(3A): 13. https://doi.org/10.4236/mrc.2013.23A003

10. Jia Z., Sun H.-J., Wang Y, Zhen T., Chang Q. Facile synthesis of tin oxide nanocrystals and their photocatalytic activity. Trans. Nonferrous Met. Soc. China. 2014. 24(6): 1813. https://doi.org/10.1016/S1003-6326(14)63258-1

11. Miller T. A., Bakrania S. D., Perez C., Wooldridge M. S. Nanostructured Tin Dioxide Materials for Gas Sensor Applications. Functional Nanomaterials. 2006. 30: 453.

12. Teterycz H., Halek P., Wiśniewski K., Halek G., Koźlecki T., Polowczyk I. Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors. Sensors. 2011. 11(4): 4425. https://doi.org/10.3390/s110404425

13. Gavrilov V., Zenkovets G. Influence of conditions of deposition of tin dioxide to form a porous structure of the xerogel. Kinetics and Catalysis. 1992. 33(1): 183. [in Russian].

14. Gavrilov V. Adsorption research of microporous structure of tin dioxide. Kinetics and Catalysis. 2000. 41(2): 304. [in Russian]. https://doi.org/10.1007/BF02771430

15. Zhang G., Liu M. Preparation of nanostructured tin oxide using a sol-gel process based on tin etrachloride and ethylene glycol. J. Mater. Sci. 1999. 34(13): 3213. https://doi.org/10.1023/A:1004685907751

16. Ivanenko I., Dontsova T., Astrelin I., Romanenko Y. Synthesis of nanodispersed powders of tin (IV) oxide with developed surface. Nanosystems, nanomaterials and nanotechnologies. 1999. 12(2): 347. [in Ukrainian].

17. Sharygin L., Vovk S., Gonchar V., Barybin V. Perehozheva T. Investigation of the hydrated tin dioxide by vibrational spectroscopy. Journal of Inorganic Chemistry. 1983. 28(3): 576. [in Russian].

18. Ho S.Y., Wong A.S.W., Ho G.W. Controllable Porosity of Monodispersed Tin Oxide Nanospheres via an Additive-Free Chemical Route. Cryst. Growth Des. 2009. 9(2): 732. https://doi.org/10.1021/cg8001256

19. Chen D., Gao L. Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process. J. Colloid Interface Sci. 2004. 279(1): 137. https://doi.org/10.1016/j.jcis.2004.06.052

20. Ivanov V., Sidorak I., Shubin A., Denisova L. Synthesis of SnO2 powders by decomposition of the thermally unstable compounds. Journal of Siberian Federal University. Engineering & Technologies. 2010. 3(2): 189. [in Russian].

21. Leboda R., Charmas B., Sidorchuk V.V. Physicochemical and technological aspects of hydrothermal modification of complex sorbents and catalysts. I. Modification of porous and crystalline structures. Adsorpt. Sci. Technol. 1997. 15(3): 189. https://doi.org/10.1177/026361749701500305

22. Chertov V., Okopnaya N. Research of hydrothermal modification of germanium dioxide, tin dioxide and lead dioxide. Colloid Journal. 1977. 39(1): 121. [in Russian].

23. Sharygin L., Gonchar V., Shtin A., Pushkarev V. Hydrothermal modification of porous structure of the hydrated tin dioxide. Kinetics and Catalysis. 1975. 16(4): 1056. [in Russian].

24. Gonchar V.F., Barybin V.I., Sharygin L.M., Tretyakov S.Y. Hydrothermal modification of hydrated tin dioxide produced by sol-gel method. Inorganic materials. 1982. 18(1): 79. [in Russian].

25. Buyanov R., Molchanov V., Boldyrev V. Mechanochemical activation as a tool of increasing catalytic activity. Catalysis Today. 2009. 144(3-4): 212. https://doi.org/10.1016/j.cattod.2009.02.042

26. Šepelák V., Bégin-Colin S., Caër G. L. Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 2012. 41: 11927. https://doi.org/10.1039/c2dt30349c

27. Boldyrev V.V. Hydrothermal reactions under mechanochemical action. Powder. Technol. 2002. 122(2–3): 247. https://doi.org/10.1016/S0032-5910(01)00421-1

28. Yang H., Hu Y., Tang A., Jin S., Qiu G. Synthesis of tin oxide nanoparticles by mechanochemical reaction. J. Alloys Compd. 2004. 363(1–2): 271. https://doi.org/10.1016/S0925-8388(03)00473-0

29. Kersen U., Sundberg M.R. The Reactive surface sites and the H2S sensing potential for the SnO2 produced by a mechanochemical milling. J. Electrochem. Soc. 2003. 150(6): H129. https://doi.org/10.1149/1.1570414

30. Cukrov L., McCormick P., Galatsis K., Wlodarski W. Gas sensing properties of nanosized tin oxide synthesized by mechanochemical processing. Sens. Actuators, B. 2001. 77: 491. https://doi.org/10.1016/S0925-4005(01)00751-1

31. Kersen Ü. The gas-sensing potential of nanocrystalline SnO2 produced by a mechanochemical milling via centrifugal action. Appl. Phys. A. 2002. 75(5): 559. https://doi.org/10.1007/s003390101020

32. Lamelas F.J. Formation of orthorhombic tin dioxide from mechanically milled monoxide powders. J. Appl. Phys. 2004. 96: 6195. https://doi.org/10.1063/1.1808920

33. Sokovykh E.V., Oleksenko L.P., Maksymovych N.P., Matushko I.P. Influence of temperature conditions of forming nanosized SnO2-based materials on hydrogen sensor properties. J. Therm. Anal. Calorim. 2015. 121(3): 1159. https://doi.org/10.1007/s10973-015-4560-x

34. Orel B., Lavrencic-Stangar U., Crnjak-Orel Z., Bukovec P., Kosec M. Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO2 and SnO2/Sb powders and dip-coated films prepared via inorganic sol-gel route. J. Non-Cryst. Solids. 1994. 167(3): 272. https://doi.org/10.1016/0022-3093(94)90250-X

35. Zhu J., Lu Z., Aruna S. T., Aurbach D., Gedanken A., Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li-Insertion Electrodes . Chem. Mater. 2000. 12(9): 255. https://doi.org/10.1021/cm990683l

36. Skwarek E., Khalameida S., Janusz W. Sydorchuk V., Konovalova N., Zazhigalov V., Skubiszewska-Zie˛ba J., Leboda R. Influence of mechanochemical activation on structure and some properties of mixed vanadium–molybdenum oxides. J. Therm. Anal. Calorim. 2011. 106(3): 881. https://doi.org/10.1007/s10973-011-1744-x

37. Srivastava D.N., Chappel S., Palchik O. Zaban A., Gedanken A. Sonochemical Synthesis of Mesoporous Tin Oxide. Langmuir. 2002. 18(10): 4160. https://doi.org/10.1021/la015761+

38. Kryukov A., Kuchmiy St., Stroyuk A., Pokhodenko V. Nanophotocatalysis. (Kiev: Akademperiodyka, 2013). [in Russian].

39. Wu T., Liu G., Zhao J., Hidaka H., Photoassisted degradation of dye pollutants. V. Self-Photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B. 1998. 102(30): 5845. https://doi.org/10.1021/jp980922c

40. Zhu Z.F., Zhou J.Q., Wang X.F., He Z.L., Liu H. Effect of pH on photocatalytic activity of SnO2 microspheres via microwave solvothermal route. Mater. Res. Innovations. 2014. 18(1): 8. https://doi.org/10.1179/1433075X12Y.0000000043

41. Sangami. G., Dharmaraj N. UV–visible spectroscopic estimation of hotodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2012. 97: 847. https://doi.org/10.1016/j.saa.2012.07.068

42. Wang G., Lu W., Li J. Choi J., Jeong Y., Choi S.-Y., Park J.-B., Ryu M. K., Lee K. V-Shaped Tin Oxide Nanostructures Featuring a Broad Photocurrent Signal: An Effective Visible-Light-Driven Photocatalyst. Small. 2006. 2(12): 1436. https://doi.org/10.1002/smll.200600216

43. Merka O., Yarovyi V., Bahnemann D.W., Wark M. pH-Control of the photocatalytic degradation mechanism of Rhodamine B over Pb3Nb4O13. J. Phys. Chem. C. 2011. 115(16): 8014. https://doi.org/10.1021/jp108637r

44. Sydorchuk V., Khalameida S., Skubiszewska-Zięba J., Davydenko L., Zazhyhalov V. Modification and catalytic properties of niobium pentoxide. Him. Fiz. Tehnol. Poverhni. 2017. 8(2): 175. [in Ukrainian].  https://doi.org/10.15407/hftp08.02.175

45. Gupta V.K., Jain R., Mittal A., Mathur M., Sikarwar S. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Colloid Interface Sci. 2007. 309(2): 464. https://doi.org/10.1016/j.jcis.2006.12.010

46. Sydorchuk V.V., Khalameida S.V., Zazhigalov V.A, Hanina O.A. Photocatalytic degradation in the presence of certain dyes mechanochemical modified vanadium oxide and molybdenum. Him. Fiz. Tehnol. Poverhni. 2013. 4(3): 266. [in Ukrainian].

47. Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009. 151(1–3): 10. https://doi.org/10.1016/j.cej.2009.02.026

48. Wu S., Cao H., Yin S. Liu X., Zhang X. Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2. J. Phys. Chem. C. 2009. 113(41): 17893. https://doi.org/10.1021/jp9068762




DOI: https://doi.org/10.15407/hftp08.03.271

Copyright (©) 2017 S. V. Khalameida, M. M. Samsonenko, J. Skubiszewska-Zięba, O. I. Zakutevskyy, L. S. Kuznetsova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.