Chemistry, Physics and Technology of Surface, 2017, 8 (4), 384-392.

Sorption of strontium on the composite sorbent based on cellulose and hydrated antimony pentoxide



DOI: https://doi.org/10.15407/hftp08.04.384

V. V. Galysh, M. T. Kartel, W. Janusz, E. Skwarek, A. A. Nikolaichuk

Abstract


In this study cellulose-inorganic sorbents based on bleached cotton fibres and hydrated antimony pentoxide were prepared and used for strontium ions sorption from model aqueous solutions. The adsorption of strontium ions was determined by the radiotracer method using radioisotopes. A comparative analysis was made of sorption properties of the obtained sorption materials with different contents of hydrated antimony pentoxide towards strontium ions. The efficiency of strontium sorption increases with the increase in the modifier content in the composite cellulose-inorganic sorbents. The maximum efficiency of strontium sorption from solution (99 %) and the maximum distribution coefficient (1400 ml/g) correspond to the sorbents with the hydrated antimony pentoxide content 2.9 %. The effect of pH on the density of ions sorption on the cellulose-inorganic sorbent and the distribution coefficient was investigated. The experimentally determined density of ions sorption and distribution coefficient for strontium varied between 0.045 and 0.076 µmol/m2 and between 100 and 1400 ml/g respectively depending on pH of model aqueous solutions. Chemical and structural properties were investigated by the low temperature nitrogen adsorption–desorption method, X-ray diffraction, infrared spectroscopy, differential thermal analysis. Surface area of the sorbents was determined by Brunauer, Emmett and Teller method. All composite cellulose-inorganic sorbents were characterized by a low specific surface area (1 m2/g). Hydrated antimony pentoxide characterized by amorphous structure and modification process does not affect cellulose crystallinity.


Keywords


cellulose-inorganic sorbent; antimony pentachloride; hydrated antimony pentoxide; strontium; removal efficiency

Full Text:

PDF

References


1. Kaçana E., Kütahyali C. Adsorption of strontium from aqueous solution using activated carbon producedfrom textile sewage sludges. J. Anal. Appl. Pyrol. 2012. 97: 149. https://doi.org/10.1016/j.jaap.2012.06.006

2. Caccin M., Giacobbo F., Da Ros M., Besozzi L., Mariani M. Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J. Radioanal. Nucl. Chem. 2013. 297(1): 9. https://doi.org/10.1007/s10967-012-2305-x

3. Zhang L., Wei J., Zhao X., Li F., Jiang F., Zhang M. Strontium (II) adsorption on Sb(III)/Sb2O5. Chem. Eng. J. 2015. 267: 245. https://doi.org/10.1016/j.cej.2014.11.124

4. Shabana E.I., El-Dessouky M.I. Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. J. Radioanal. Nucl. Chem. 2002. 253(2): 281. https://doi.org/10.1023/A:1019610128059

5. Yavari R., Huang Y.D., Ahmadi S.J., Bagheri G. Uptake behavior of titanium molybdophosphate for cesium and strontium. J. Radioanal. Nucl. Chem. 2010. 286(1): 223. https://doi.org/10.1007/s10967-010-0642-1

6. Janusz W., Skwarek E. Study of sorption processes of strontium on the synthetic hydroxyapatite. Adsorption. 2016. 22(4): 697. https://doi.org/10.1007/s10450-016-9761-5

7. Merceille A., Evelyne Weinzaepfe E., Barré Y., Grandjean A. The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Sep. Purif. Technol. 2012. 96: 81. https://doi.org/10.1016/j.seppur.2012.05.018

8. Marinin D.V., Brown G.N. Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Manage. 2000. 20(4): 545. https://doi.org/10.1016/S0956-053X(00)00017-9

9. Faghihian H., Ghannadi Marageh M., Kazemian H. The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl. Radiat. Isot. 1999. 50(4): 655. https://doi.org/10.1016/S0969-8043(98)00134-1

10. Kubota T., Fukutani S., Ohta T., Mahara Y. Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon. J. Radioanal. Nucl. Chem. 2013. 296(2): 981. https://doi.org/10.1007/s10967-012-2068-4

11. Pshinko G., Kobets S., Fedorova V. Sorption-desorption of 137Cs and 90Sr in the migration and deactivation processes. Yaderna Energetika ta Dovkyillya. 2014. 2: 32. (in Russian).

12. Bors J., Gorny A., Dultz S. Iodide, caesium and strontium adsorption by organophilic vermiculite. Clay minerals. 1997. 32(1): 21. https://doi.org/10.1180/claymin.1997.032.1.04

13. Papachristodoulou C.A., Assimakopoulos P.A., Gangas N-H.J. Strontium adsorption properties of an aluminum-pillared montmorillonite carrying carboxylate functional groups. J. Colloid Interface. Sci. 2002. 245(1): 32. https://doi.org/10.1006/jcis.2001.7988

14. Galamboš M., Kufčáková J., Rosskopfová O., Rajec P. Adsorption of cesium and strontium on natrified bentonites. J. Radioanal. Nucl. Chem. 2010. 283(3): 803. https://doi.org/10.1007/s10967-009-0424-9

15. Galysh V., Sevastyanova O., Kartel M., Lindström M., Gornikov Yu. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. J. Therm. Anal. Calorim. 2017. 128(2): 1019. https://doi.org/10.1007/s10973-016-5984-7

16. Segal L., Creely J.J., Martin A.E., Conrad C.M. An empirical method for estimating the degree of crystalinity of native cellulose using X-ray diffractometer. Textile Research Journal. 1959. 29: 786. https://doi.org/10.1177/004051755902901003

17. Abdel-Gali, E.A., El-kenany W.M., Hussin L.M.S. Preparation of nanostructured hydrated antimony oxide using a sol-gel process. Characterization and applications for sorption of La3+ and Sm3+ from aqueous solutions. Russ. J. Appl. Chem. 2015. 88(8): 1351. https://doi.org/10.1134/S1070427215080200

18. Ciolacu D., Ciolacu F., Popa V.I. Amorphous cellulose – structure and characterization. Cellul. Chem. Technol. 2011. 45(1–2): 13.

19. Blokhin A.V., Shishonok M.V., Voitkevich O.V. Thermodynamic properties of cellulose of various structure in the temperature range 5-370 K. Russ. J. Appl. Chem. 2012. 85(2): 303. https://doi.org/10.1134/S1070427212020255

20. Lu H., Gui Y., Zheng L., Liu X. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res. Int. 2013. 50(1): 121. https://doi.org/10.1016/j.foodres.2012.10.013

21. Khan S.A., Riaz-ur-Rehman, Khan M.A. Sorption of strontium on bentonite. Waste. Manage. 1995. 15(8): 641. https://doi.org/10.1016/0956-053X(96)00049-9

22. Lonin A.Yu., Krasnopyorova A.P. Influence of different factors on sorption of 90Sr by natural and synthetic zeolites. Problems of Atomic Science and Technology. 2005. 6(45): 130.

23. Galysh V.V., Kartel M.T. Modification of cellulose and lignocellulose materials with nanoclusters of copper ferrocyanides. Him. Fiz. Technol. Poverhni. 2014. 5(4): 438. https://doi.org/10.15407/hftp05.04.438




DOI: https://doi.org/10.15407/hftp08.04.384

Copyright (©) 2017 V. V. Galysh, M. T. Kartel, W. Janusz, E. Skwarek, A. A. Nikolaichuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.