Chemistry, Physics and Technology of Surface, 2019, 10 (4), 327-339.

Bactericidal adsorbents obtained by ion exchange modification of natural phillipsite



DOI: https://doi.org/10.15407/hftp10.04.327

V. G. Tsitsishvili, N. M. Dolaberidze, M. O. Nijaradze, N. A. Mirdzveli, Z. S. Amiridze

Abstract


Zeolite adsorbents and ion exchangers reducing the concentrations of contaminants in aqueous medium, containing bioactive metals and endowed with bactericidal properties are promising for application in environmental protection practice and medicine. Phillipsite has a high ion exchange capacity and can be used to produce such materials. Silver-, copper-, and zinc-containing micro-mesoporous zeolite materials have been prepared on the basis of natural phillipsite from the Shukhuti field, Western Georgia(Saqartvelo), using ion-exchange reactions between grinded and washed by dilute hydrogen chloride solution zeolite and a salt of a corresponding transition metal in the solid phase followed by washing with distilled water. Synthesized in such way adsorbent-ion-exchangers are characterized by chemical analysis and sorption data (nitrogen adsorption-desorption isotherms at 77 K and water vapour sorption at room temperature), powder X-ray diffraction patterns, Fourier transform infra-red spectra, and scanning electron microscope images. Obtained materials keep the crystal structure and general sorption and ion-exchange properties of phillipsite, they contain up to 230 mg/g of silver, 66 mg/g of copper, and 86 mg/g of zinc, which is several times higher than the content of bioactive metals in the cation-exchange forms of clinoptilolite and synthetic zeolites obtained by ion exchange in the liquid phase described in the literature. Prepared silver-, copper-, and zinc-containing phillipsites show bactericidal and bacteriostatic activity towards Escherichia coli regardless of whether the number of released ions of the bioactive metal reaches the minimum inhibitory concentration in solution. The procedure of dry ion-exchange synthesis leads to an increase in the dispersion of the material, but does not affect the developed mesoporous system of phillipsite and the total pore volume averaging 0.285 cm3/g. The compliance of proposed method for preparation of silver-, copper-, and zinc-containing forms of phillipsite with high environmental standards is confirmed by its low Sheldon’s factor E in comparison with the similar green chemistry metrics of conventional methods of the ion exchange in solutions.


Keywords


silver-; copper-; zinc-containing zeolites; solid-state ion exchange; Escherichia coli

Full Text:

PDF

References


1. Roque-Malhebre R.M.A. Applications of Natural Zeolites in Pollution Abatement and Industry. In: Handbook of Surfaces and Interfaces of Materials. V. 5. (San Diego, CA: Academic Press, 2001). https://doi.org/10.1016/B978-012513910-6/50069-4

2. Wang S., Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 2010. 156(1): 11. https://doi.org/10.1016/j.cej.2009.10.029

3. Fu F., Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011. 92(3): 407. https://doi.org/10.1016/j.jenvman.2010.11.011

4. Misaelides P. Application of natural zeolites in environmental remediation: A short review. Microporous Mesoporous Mater. 2011. 144(1-3): 15. https://doi.org/10.1016/j.micromeso.2011.03.024

5. Margeta K., Zabukovec Logar N., Šiljeg M., Farkas A. Natural Zeolites in Water Treatment - How Effective is Their Use. In: Water Treatment. (London: IntechOpen, 2013). https://doi.org/10.5772/50738

6. Steffin J.E., Dilson B.S., Manikandan P.M. An overview on activated carbon and zeolites in water treatment. Imperial Journal of Interdisciplinary Research. 2016. 2(11): 6.

7. Semmens M.J., Seyfard M. The Selectivity of Clinoptilolite for Certain Heavy Metals. In: Natural Zeolites: Occurrence, Properties and Use. (New York: Pergamon, 1978).

8. Semmens M.J., Martin W.P. The influence of pretreatment on the capacity and selectivity of clinoptilolite for metal ions. Water Res. 1988. 22(5): 537. https://doi.org/10.1016/0043-1354(88)90052-8

9. Zamzow M.J., Murphy J.E. Removal of metal cations from water using zeolites. Sep. Sci. Technol. 1992. 27(14): 1969. https://doi.org/10.1080/01496399208019459

10. Langella A., Pansini M., Cappelletti P., de Gennaro B., de Gennaro M., Colella C. NH4+, Cu2+, Zn2+, Cd2+, and Pb2+ exchange for Na+ in a sedimentary clinoptilolite, North Sardinia, Italy. Microporous Mesoporous Mater. 2000. 37(6): 337. https://doi.org/10.1016/S1387-1811(99)00276-0

11. Hui K.S., Chao C.Y.H., Kot S.C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater. 2005. 127(12): 89. https://doi.org/10.1016/j.jhazmat.2005.06.027

12. Yadanaparthi S.K.R., Graybill D., Wandruszka R. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J. Hazard. Mater. 2009. 171(1): 1. https://doi.org/10.1016/j.jhazmat.2009.05.103

13. Taamneh Y., Sharadqah S. The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl. Water Sci. 2017. 7(7): 2021. https://doi.org/10.1007/s13201-016-0382-7

14. Yanovska E.S., Savchenko I., Polonska Y., Ol'khovik L., Sternik D., Kichkiruk O.Y. Sorption properties for ions of toxic metals of carpathian clinoptilolite (Ukraine), in situ modified by poly[N-(4-carboxyphenyl)methacrylamide. New Materials, Compounds and Applications. 2017. 1(1): 45.

15. Ali I., Asim M., Khan T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012. 113(12): 170. https://doi.org/10.1016/j.jenvman.2012.08.028

16. Kawahara K., Tsuruda K., Morishita M., Uchida M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. J. 2000. 16(6): 452. https://doi.org/10.1016/S0109-5641(00)00050-6

17. Rivera-Garza M., Olguin M.T., Garcia-Sosa I., Alcantara D., Rodriguez-Fuentes G. Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater. 2000. 39(3): 431. https://doi.org/10.1016/S1387-1811(00)00217-1

18. Top A., Ülkü S. Silver, zinc, and copper exchange in Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci. 2004. 27(1-2): 13. https://doi.org/10.1016/j.clay.2003.12.002

19. De la Rosa-Gomez I., Olguin M.T., Alcantara D. Bactericides of coliform microorganisms from wastewater using silver-clinoptilolite rich tuffs. Appl. Clay Sci. 2008. 40(1-4): 45. https://doi.org/10.1016/j.clay.2007.07.001

20. Ferreira L., Fonseca A.M., Botelho G., Almeida-Aguiar C., Neves I.C. Antimicrobial activity of faujasite zeolites doped with silver. Microporous Mesoporous Mater. 2012. 160(9): 126. https://doi.org/10.1016/j.micromeso.2012.05.006

21. Hrenovic J., Milenkovic J., Ivankovic T., Rajic N. Antibacterial activity of heavy metal-loaded natural zeolite. J. Hazard. Mater. 2012. 201-202(1): 260. https://doi.org/10.1016/j.jhazmat.2011.11.079

22. Guerra R., Lima E., Viniegra M., Guzman A., Lara V. Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolite. Microporous Mesoporous Mater. 2012. 147(1): 267. https://doi.org/10.1016/j.micromeso.2011.06.031

23. Hrenovic J., Milenkovic J., Goic-Barisic I., Rajic N. Antibacterial activity of modified natural zeolite against clinical isolates of Acinetobacter baumannii. Microporous Mesoporous Mater. 2013. 169(3): 148. https://doi.org/10.1016/j.micromeso.2012.10.026

24. Akhigbe L., Ouki S., Saroj D., Min Lim X. Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions. Environ. Sci. Pollut. Res. 2014. 21(18): 10940. https://doi.org/10.1007/s11356-014-2888-6

25. Demirci S., Ustaoğlu Z., Yılmazer G.A., Sahin F., Baç N. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 2014. 172(3): 1652. https://doi.org/10.1007/s12010-013-0647-7

26. Rossainz-Castro L.G., De la Rosa-Gomez I., Olguín M.T., Alcantara-Díaz D. Comparison between silver- and copper-modified zeolite rich tuffs as microbicidal agents for Escherichia coli and Candida albicans. J. Environ. Manag. 2016. 183(3): 763. https://doi.org/10.1016/j.jenvman.2016.09.034

27. Milenkovic J., Hrenovic J., Matijasevic D., Niksic D., Rajic N. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ. Sci. Pollut. Res. 2017. 24(6): 20273. https://doi.org/10.1007/s11356-017-9643-8

28. Dolaberidze N., Tsitsishvili V., Khutsishvili B., Mirdzveli N., Nijaradze M., Amiridze Z., Burlanadze M. Silver- and zinc-containing bactericidal phillipsites. New Materials, Compounds and Applications. 2018. 2(3): 247.

29. Klasen H.J. A historical review of the use of silver in the treatment of burns. I. Early uses. II. Renewed interest for silver. Burns: Journal of International Society for Burn Injuries. 2000. 26(2): 117. https://doi.org/10.1016/S0305-4179(99)00108-4

30. Kędziora A., Speruda M., Krzyżewska E., Rybka J., Łukowiak A., Bugla-Płoskońska G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci. 2018. 19(2): 444. https://doi.org/10.3390/ijms19020444

31. Shi W.Y., Shao H.B., Li H., Shao M.A., Du S. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J. Hazard. Mater. 2009. 170(1): 1. https://doi.org/10.1016/j.jhazmat.2009.04.097

32. Martemianova I., Nadeina L., Plotnikov E., Martemianov D. Modification of natural sorbent for providing it with bactericidal and bacteriostatic properties. In: Chemistry and Chemical Technology in XXI Century (CCT-2016). MATEC Web of Conferences (November 17, 2016) P. 01030. https://doi.org/10.1051/matecconf/20168501030

33. Jiraroj D., Tungasmita S., Tungasmita D.N. Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity. Powder Technol. 2014. 264(9): 418. https://doi.org/10.1016/j.powtec.2014.05.049

34. Kwakye-Awuah B., Williams C., Kenward M.A., Radecka I. Antimicrobial action and efficiency of silver-loaded zeolite X. J. Appl. Microbiol. 2008. 104(5): 1516. https://doi.org/10.1111/j.1365-2672.2007.03673.x

35. Baerlocher Ch., McCucker L.B., Olson D.H. Atlas of zeolite framework types. 6th ed. (Amsterdam: Elsevier, 2007).

36. Kallo D. Applications of natural zeolites in water and wastewater treatment. Rev. Mineral. Geochem. 2001. 45(1): 519. https://doi.org/10.2138/rmg.2001.45.15

37. Tsitsishvili V., Alelishvili M., Dolaberidze N., Nijaradze M., Mirdzveli N. Surfactant-modified clinoptilolite and phillipsite. Bulletin of the Georgian Academy of Sciences. 2003. 167(3): 457.

38. Rawajfih Z., Al Mohammad H., Nsour N., Ibrahim K. Study of equilibrium and thermodynamic adsorption of α-picoline, β-picoline, and γ-picoline by Jordanian zeolites: Phillipsite and faujasite. Microporous Mesoporous Mater. 2010. 132(3): 401. https://doi.org/10.1016/j.micromeso.2010.03.019

39. Bhatnagar A. Application of adsorbents for water pollution control. (Sharjah, Bussum: Bentham Science Publishers, 2012). https://doi.org/10.2174/97816080526911120101

40. Tsitsishvili V., Dolaberidze N., Mirdzveli N., Nijaradze M., Amiridze Z., Gabunia V., Tsintskaladze G. Hydrothermal transformation of natural analcime and phillipsite. Bulletin of the Georgian National Academy of Sciences. 2019. 13(1): 66.

41. Jędrzejczyk R.J., Turnau K., Jodłowski P.L., Chlebda D.K., Łojewski T., Łojewska J. Antimicrobial properties of silver cations substituted to faujasite mineral. Nanomaterials (Basel). 2017. 7(9): 240. https://doi.org/10.3390/nano7090240

42. Persson I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl Chem. 2010. 82(10): 1901. https://doi.org/10.1351/PAC-CON-09-10-22

43. Mulley G., Jenkins A.T.A., Waterfield N.R. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds. PLoS ONE. 9(4): e94409. https://doi.org/10.1371/journal.pone.0094409

44. Navarro C.A., von Bernath D., Jerez C.A. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: Importance for biomining and bioremediation. Biol. Res. 2017. 46(4): 363. https://doi.org/10.4067/S0716-97602013000400008

45. Sheldon R.A. The E factor: fifteen years on. Green Chem. 2007. 9(12): 1273. https://doi.org/10.1039/b713736m

46. Tsitsishvili V., Dolaberidze N., Urotadze S., Alelishvili M., Mirdzveli N., Nijaradze M. Ion exchange properties of Georgian natural zeolites. Chemistry Journal of Moldova. 2017. 12(1): 95. https://doi.org/10.19261/cjm.2017.413




DOI: https://doi.org/10.15407/hftp10.04.327

Copyright (©) 2019 V. G. Tsitsishvili, N. M. Dolaberidze, M. O. Nijaradze, N. A. Mirdzveli, Z. S. Amiridze

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.