Хімія, фізика та технологія поверхні, 2014, 5 (2), 119-128.

Електронна структура допованого металами анатазу, що розрахована з періодичними граничними умовами і в кластерному наближенні



V. M. Gun'ko

Анотація


У кластерному наближенні (методи РМ7, ТФГ, ab initio) та з використанням періодичних граничних умов (DFTB+, РМ7 з розширеною коміркою з 18, 48, 64 та 108 формульних одиниць TiO2) розглянуто зміни електронної структури анатазу, допованого 3d- та 4d-металами, Sr, Ca і B/N. Найбільш надійні результати отримано при використанні періодичних граничних умов і ТФГ. Проникнення в гратку анатазу неізоелектронної домішки приводить головним чином до змін електронної структури біля верхньої межі валентної зони, якщо атоми допанту мають надлишок валентних електронів, і біля зони провідності, коли вони мають дефіцит валентних електронів по відношенню до атома титану.

Ключові слова


кластерне квантовохімічне наближення; електронна структура; допований металами анатаз

Повний текст:

PDF (Русский)

Посилання


1. Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results // Chem. Rev. – 1995. – V. 95. – P. 735–758.

2. Fujishima A., Hashimoto K., Watanabe T. TiO2 Photocatalysis Fundaments and Applications, University of Tokyo, BKC, Inc., Tokyo, 1999. – 176 р.

3. Emori M., Sugita M., Ozawa K., Sakama H. Electronic structure of epitaxial anatase TiO2 films: Angle-resolved photoelectron spectro-scopy study // Phys. Rev. B. – 2012. – V. 85, 035129. – P. 1–6.

4. Lei Y., Liu H., Xiao W. First principles study of the size effect of TiOanatase nanoparticles in dye-sensitized solar cell // Model. Simul. Mater. Sci. Eng. - 2010. – V. 18, 025004. – P. 1–9.

5. Šćepanović M.J., Grujić-Brojčin M., Dohčević-Mitrović Z.D., Popović Z.V. Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy // Sci. Sintering. – 2009. – V. 41. – P. 67–73.

6. Lazzeri M., Vittadini A., Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces // Phys. Rev. B. – 2001. – V. 63, 155409. – P. 1–9.

7. Yin W.-J., Chen S., Yang J.-H. et al. Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction // Appl. Phys. Lett. – 2010. – V. 96, 221901. – P. 1–3.

8. Minaev B.F., Baryshnikov G.V., Minaeva V.A. Electronic structure and spectral properties of the triarylamine-dithienosilole dyes for efficient organic solar cells // Dyes Pigments. – 2011. – V. 92, N 1. – Р. 531–536.

9. Liu G., Yin L.-C., Wang J. et al. A red anatase TiO2 photocatalyst for solar energy conversion // Energy Environ. Sci. – 2012. – V. 5. – P. 9603–9610.

10. Zimmermann R., Steiner P., Claessen R. et al. Electronic structure systematics of 3d transition metal oxides // J. Electron Spectros. Related Phenom. – 1998. – V. 96. – P. 179–186.

11. Patrick C.E., Giustino F. GW quasiparticle bandgaps of anatase TiO2 starting from DFT+U // J. Phys.: Condens. Matter. – 2012. – V. 24, 202201. – P. 1–5.

12. Gong S., Liu B.-G. Electronic structures and optical properties of TiO2: Improved density-functional-theory investigation // Chin. Phys. B. – 2012. – V. 21, 057104. – P. 1–7.

13. Umebayashi T., Yamaki T., Itoh H., Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations // J. Phys. Chem. Solid. – 2002. – V. 63. – P. 1909–1920.

14. Wang Y., Doren D.J. Electronic structures of    V-doped anatase TiO2 // Solid State Communications. – 2005. – V.136. – P. 142–146.

15. Alexopoulos K., Hejduk P., Witko M. et al. Theoretical study of the effect of (001) TiO2 anatase support on V2O5 // J. Phys. Chem. C. – 2010. – V. 114. – P. 3115–3130.

16. Hanaor D.A.H., Assadi M.H.N., Li S. et al. Ab initio study of phase stability in doped TiO2 // Comput. Mech. – 2012. – V. 50. – P. 185–194.

17. Geng W.T., Kim K.S. Interplay of local structure and magnetism in Co-doped TiO2 anatase // Solid State Comm. – 2004. – V. 129. – P. 741–746.

18. Lee C., Aikens C.M. Effects of Mn-doping on (TiO2)n (n = 2–5) complexes // Comput. Theor. Chem. – 2013. – V. 1013. – P. 32–45.

19. Sun S., Ding J., Bao J. et al. Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mecha-nism // Appl. Surf. Sci. – 2012. – V. 258. –    P. 5031–5037.

20. Yu Q., Jin L., Zhou C. Ab initio study of electronic structures and absorption properties of pure and Fe3+ doped anataseTiO2 // Solar Energy Mater. Solar Cell. – 2011. – V. 95. – P. 2322–2326.

21. Niu M., Cheng D., Cao D. Enhanced photo-electrochemical performance of anatase TiO2 by metal-assisted S-O coupling for water splitting // Int. J. Hydrogen Energ. – 2013. – V. 38. – P. 1251–1257.

22. Shirley R., Inderwildi O.R., Kraft M. Electronic and optical properties of aluminium-doped anatase and rutile TiO2 from ab initio calculations // University of Cambridge, Cambridge, UK. – 2009. – Preprint N 71. – P. 1–22.

23. Song K., Han X., Shao G. Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study // J. Alloys Compd. – 2013. – V. 551. – P. 118–124.

24. Bian L., Song M., Zhou T. et al. Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2 // J. Rare Earths. – 2009. –V. 27. – P. 461–468.

25. Lippens P.E., Chadwick A.V., Weibel A. et al. Structure and chemical bonding in Zr-doped anatase TiOnanocrystals // J. Phys. Chem. C. – 2008. – V. 112. – P. 43–47.

26. Gao P., Wu J., Liu Q.-J., Zhou W.-F. First principles study on anatase TiO2 codoped with nitrogen and praseodymium // Chin. Phys. B. – 2010. – V. 19, 087103. – P. 1–9.

27. Li L., Yang W., Ding Y., Zhu X. First principles study of the electronic structure of hafnium-doped anatase TiO2// Journal of Semicon-ductors. – 2012. – V. 33, 012002. – P. 1–4.

28. Hou X.-G., Liu A.-D., Huang M.-D. et al. First principles band calculations on electronic structures of Ag-doped rutile and anatase TiO2 // Chin. Phys. Lett. – 2009. – V. 26, 077106. –      P. 1–4.

29. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01, Wallingford CT: Gaussian, Inc., 2013.

30. Godbout N., Salahub D.R., Andzelm J., Wimmer E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation // Can. J. Chem. – 1992. – V. 70. – P. 560–571.

31. Sosa C., Andzelm J., Elkin B.C. et al. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds // J. Phys. Chem. – 1992. – V. 96. – P. 6630–6636.

32. Stewart J.J.P. MOPAC 2012, Colorado Springs, CO: Stewart Computational Chemistry, USA, http://openmopac.net/, 2013.

33. Maia J.D.C., Carvalho G.A.U., Mangueira C.P.Jr. et al. GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations // J. Chem. Theory Comput. – 2012. – V. 8. – P. 3072–3081.

34. Aradi B., Hourahine B., Frauenheim Th. DFTB+, a sparse matrix-based implementation of the DFTB method // J. Phys. Chem. A. – 2007. – V. 111, N 26. – P. 5678–5684.




Copyright (©) 2014 V. M. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.