Функціоналізовані мезопористі кремнеземи як носії для вивільнення біологічно активних речовин
Анотація
Ключові слова
Посилання
1. Kresge C.T., Leonowicz M.E., Roth W.J. et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. − 1992. − V. 359. − P. 710−712.
2. Beck J.S., Vartuli J.C., Roth W.J. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. − 1992. − V. 114. − P. 10834–10843.
3. Slowing I.I., Vivero‑Escoto J.L., Wu C.‑W., Lin S.‑Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Delivery Rev. − 2008. − V. 60. − P. 1278−1288.
4. Kisler J.M., Dahler A., Stevens G.W., O’Connor A.J. Separation of biological molecules using mesoporous molecular sieves. Micropor. Mesopor. Mater. − 2001. − V. 44−45. − P. 769−774.
5. Horcajada P., Ramila A., Perez-Pariente J., Vallet-Regi M. Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor. Mesopor. Mat. − 2004. − V. 68. − P. 105−109.
6. Marzouqa D.M., Zughul M.B., Taha M.O., Hodali H.A. Effect of particle morphology and pore size on the release kinetics of ephedrine from mesoporous MCM‑41 materials. J. Porous Mater. − 2012. − V. 19. − P. 825−833.
7. Gao L., Sun J., Zhang L. et al. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery. Mater. Chem. Phys. − 2012. − V. 135. − P. 786−797.
8. Qu F., Zhu G., Lin H. et al. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. J. Solid State Chem. − 2006. − V. 179. − P. 2027–2035.
9. Shen S.-C., Ng W.K., Chia L., Hu J., Tan R.B.H. Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: Effect of pore and particle size. Int. J. Pharm. − 2011. − V. 410. − P. 188–195.
10. Tang Q., Xu Y., Wu D. et al. Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. J. Control. Release. − 2006. − V. 114. − P. 41–46.
11. Aznar E., Sancenon F., Marcos M.D. et al. Delivery modulation in silica mesoporous supports via alkyl chain pore outlet decoration. Langmuir. − 2012. − V. 28. − P. 2986−2996.
12. Qu F., Zhu G., Huang S., Li S., Qiu S. Effective controlled release of captopril by silylation of mesoporous MCM-41. Chem. Phys. Chem. − 2006. − V. 7. − P. 400−406.
13. Doadrio J.C., Sousa E.M.B., Izquierdo-Barba I. et al. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem. − 2006. − V. 16. − P. 462−466.
14. Manzano M., Aina V., Arean C.O. et al. Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chem. Eng. J. − 2008. − V. 137. − P. 30–37.
15. Szegedi A., Popova M., Goshev I., Mihaly J. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J. Solid State Chem. − 2011. − V. 184. −P. 1201–1207.
16. Song S.-W., Hidajat K., Kawi S. Functi-onalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir. − 2005. − V. 21. − P. 9568−9575.
17. Munoz B., Ramila A., Perez-Pariente J. et al. MCM-41 organic modification as drug delivery rate regulator. Chem. Mater. − 2003. − V. 15. − P. 500−503.
18. Horcajada P., Ramila A., Ferey G., Vallet-Regi M. Influence of superficial organic modification of MCM-41 matrices on drug delivery rate. Solid State Sci. − 2006. − V. 8. − P. 1243–1249.
19. Nieto A., Balas F., Colilla M. et al. Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage. Micropor. Mesopor. Mater. − 2008. − V. 116. − P. 4–13.
20. Hunt C.A., MacGregor R.D., Siegel R.A. Engineering targeted in vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations. Pharm. Res. − 1986. − V. 3. − P. 333−344.
21. Lee C.‑H., Lo L.‑W., Mou C.‑Y., Yang C.‑S. Synthesis and characterization of positive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti-inflammatory drug. Adv. Funct. Mater. − 2008. − V. 18. − P. 3283–3292.
22. Tzankov B., Yoncheva K., Popova M. et al. Indometacin loading and in vitro release properties from novel carbopol coated spherical mesoporous silica nanoparticles. Micropor. Mesopor. Mater. − 2013. − V. 171. − P. 131−138.
23. Zheng H., Che S. Amino/quaternary ammonium groups bifunctionalized large pore mesoporous silica for pH-responsive large drug delivery. RSC Adv. − 2012. − V. 2. − P. 4421−4429.
24. Kim M.S., Jeon J.B., Chang J.Y. Selectively functionalized mesoporous silica particles with PEGylated outer surface and the doxorubicin‑grafted inner surface: Improvement of loading content and solubility. Micropor. Mesopor. Mater. − 2013. − V. 172. − P. 118−124.
25. Gan Q., Lu X., Dong W. et al. Endosomal pH-activatable magnetic nanoparticle-capped mesoporous silica for intracellular controlled release. J. Mater. Chem. − 2012. − V. 22. − P. 15960−15968.
26. Gao Y., Yang C., Liu X. et al. A multi-functional nanocarrier based on nanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery. Macromol. Biosci. − 2012. − V. 12. − P. 251−259.
27. Roik N.V., Belyakova L.A. Chemical design of pH-sensitive nanovalves on outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid. J. Solid State Chem. − 2014. − V. 215. − P. 284−291.
28. Roik N.V., Belyakova L.A., Dziazko M.O. Mesoporous silica equipped with pH-sensitive nanovalves for controlled liberation of para-aminobenzoic acid. Proceedings of E-MRS 2014 Spring Meeting. − France, Lille. − 26−30 May 2013. − P. Q.PI 1
29. Casasus R., Marcos M.D., Martinez‑Manez R. et al. Toward the development of ionically controlled nanoscopic molecular gates. J. Am. Chem. Soc. − 2004. − V. 126. − P. 8612−8613.
30. Casasus R., Climent E., Marcos M.D. et al. Dual aperture control on pH‑ and anion‑driven supramolecular nanoscopic hybrid gate‑like ensembles. J. Am. Chem. Soc. − 2008. − V. 130. − P. 1903−1917.
31. Bernardos A., Aznar E., Coll C. et al. Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. J. Controll. Rel. − 2008. − V. 131. − P. 181–189.
32. Yang Y.‑W. Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Med. Chem. Commun. − 2011. − V. 2. − P. 1033−1049.
33. Ambrogio M.W., Thomas C.R., Zhao Y.‑L. et al. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Accounts of Chem. Res. − 2011. − V. 44, N 10. − P. 903−913.
34. Li Z., Barnes J.C., Bosoy A. et al. Mesoporous silica nanoparticles in biomedical application. Chem. Soc. Rev. − 2012. − V. 41. − P. 2590−2605.
35. Nguyen T.D., Leung K.С.‑F., Liong M. et al. Construction of a pH‑driven supramolecular nanovalve. Org. Lett. − 2006. − V. 8, N 15. − P. 3363−3366.
36. Klichko Y., Khashab N.M., Yang Y.‑W. et al. Improving pore exposure in mesoporous silica films for mechanized control of the pores. Micropor. Mesopor. Mater. − 2010. − V. 132. − P. 435−441.
37. Angelos S., Yang Y.‑W., Patel K. et al. pH‑responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Int. Ed. − 2008. − V. 47. − P. 2222−2226.
38. Meng H., Xue M., Xia T. et al. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH‑sensitive nanovalves. J. Am. Chem. Soc. − 2010. − V. 132. − P. 12690−12697.
39. Park C., Oh K., Lee S.C., Kim C. Controlled release of guest molecules from mesoporous silica particles based on a pH‑responsive polypseudorotaxane motif. Angew. Chem. Int. Ed. − 2007. − V. 46. − P. 1455−1457.
Copyright (©) 2014 N. V. Roik
This work is licensed under a Creative Commons Attribution 4.0 International License.