Хімія, фізика та технологія поверхні, 2015, 6 (2), 216-223.

Аналіз карбіду кремнію та кремнезем-вуглецевої шихти методом ТГА-ДСК-МС



DOI: https://doi.org/10.15407/hftp06.02.216

I. Yu. Tishchenko, O. O. Ilchenko, P. O. Kuzema

Анотація


Шляхом карботермічного відновлення нанокремнезему було синтезовано бета карбід кремнію високої чистоти з субмікронним та мікронним розміром частинок. Одержаний порошок та кремнезем-вуглецеву шихту охарактеризовано методами інфрачервоної спектроскопії з Фур’є перетворенням, електронної мікроскопії та рентгенівської дифракції. Результати аналізу методом ТГА-ДСК-МС вказують на можливість кількісного визначення цим методом вуглецю в шихті та залишкового вуглецю в карбіді кремнію з чутливістю на рівні 5 ppm.

Ключові слова


карботермічне відновлення; кремнезем-вуглецевий нанокомпозит; карбід кремнію; електронна мікроскопія; ТГА; ДСК

Повний текст:

PDF (English)

Посилання


1. Saddow S.E., Agarwal A. Advances in Silicon Carbide Processing and Applications, Artech House Inc., Boston and London, 2004, 212 p.

2. Harris G.L. Properties of Silicon Carbide, INSPEC, London, 1995, 289 p.

3. Somiya S., Inomata Y. Silicon Carbide Ceramics–l: Fundamental and Solid Reaction, Elsevier, London and New York, 1991, 456 p.

4. Baliga B.J. Silicon Carbide Power Devices, World Scientific Publishing, Singapore, 2005, 503 p.

5. Friedrichs P., Kimoto T., Ley L., Pensl G. Silicon Carbide: Power Devices and Sensors, Wiley-VCH, Weinheim, 2010, 500 p.

6. Casady J.B., Johnson R.W. Status of silicon carbide (SiC) as a wide-bandgap semicon-ductor for high-temperature applications: A review, Solid-State Electron., 39 (1996) 1409.

7. Choyke W.J., Matsunami H., Pensl G. Silicon Carbide. Recent Major Advances, Springer, Berlin, 2004,

8. Wijesundara M.B.J., Azevedo R.G. Silicon Carbide Microsystems for Harsh Environments, Springer, New York, 2011, 232 p.

9. El-Gallab M., Sklad M. Machining of Al/SiC particulate metal-matrix composites. Part I: Tool performance., J. Mater. Process. Technol., 83 (1998) 151.

10. Jia K., Fischer T.E. Abrasion resistance of nanostructured and conventional cemented carbides, Wear, 200 (1996) 206.

11. Gerhardt R. Properties and Applications of Silicon Carbide, InTech, Rijeka and Shanghai, 2011.

12. Weimer A.W., Nilsen K.J., Cochran G.A., Roach R.P. Kinetics of carbothermal reduction synthesis of beta silicon carbide, AIChE J., 39 (1993) 493.

13. Krstic V.D. Production of fine, high-purity beta silicon carbide powders, J. Am. Ceram. Soc., 75 (1992) 170.

14. Blumenthal J.L., Santy M.J., Burns E.A. Kinetic studies of high-temperature carbon-silica reactions in charred silica-reinforced phenolic resins, AIAA J., 4 (1966) 1053.

15. Klinger N., Strauss E.L., Komarek K.L. Reactions between silica and graphite, J. Amer. Ceram. Soc., 49 (1966) 369.

16. Khalafalla S.E., Haas L.A. Kinetics of carbothermal reduction of quartz under vacuum, J. Amer. Ceram. Soc., 55 (1972) 414.

17. Viscorni F., Himmel L. Kinetic and mechanistic study on the formation of silicon carbide from silica flour and coke breeze, J. Metals, 6 (1978) 21.

18. Ono K., Kurachi Y. Kinetic studies on β-SiC formation from homogeneous precursors, J. Mat. Sci., 26 (1991) 388.

19. Alekseev S.A., Zaitsev V.N., Botsoa J., Barbier D. Fourier transform infrared spectroscopy and temperature-programmed desorption mass spectrometry study of surface chemistry of porous 6H-SiC, Chem. Mater., 19 (2007) 2189.

20. Kevorkijan V.M., Komac M., Kolar D. Low-temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO2, J. Mater. Sci., 27 (1992) 2705.




DOI: https://doi.org/10.15407/hftp06.02.216

Copyright (©) 2015 I. Yu. Tishchenko, O. O. Ilchenko, P. O. Kuzema

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.