Будова і властивості гексагональних вуглецевих нанокластерів C95N графеноподібної структури
DOI: https://doi.org/10.15407/hftp07.02.157
Анотація
Ключові слова
Посилання
1. Abergel D.S.L., Apalkov V., Berashevich J., Ziegler K., Chakraborty T. Properties of graphene: a theoretical perspective. Adv. Phys. 2010. 59(4): 261. https://doi.org/10.1080/00018732.2010.487978
2. Barnarda A.S., Snook I.K. Size- and shape-dependence of the graphene to graphane transformation in the absence of hydrogen. J. Mater. Chem. 2010. 20: 10459. https://doi.org/10.1039/c0jm01436b
3. Lehtinen P.O., Foster A.S., Yuchen Ma, Krasheninnikov A.V., Nieminen R.M. Irradiation-Induced Magnetism in Graphite: A Density Functional Study. Phys. Rev. Lett. 2004. 93(18): 187202. https://doi.org/10.1103/PhysRevLett.93.187202
4. Amara H., Latil S., Meunier V., Ph. Lambin, Charlier J.-C. Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction. Phys. Rev. B. 2007. 76: 115423. https://doi.org/10.1103/PhysRevB.76.115423
5. Barnarda Amanda S., Snook Ian K. Ripple induced changes in the wavefunction of graphene: an example of a fundamental symmetry breaking. Nanoscale. 2012. 4: 1167. https://doi.org/10.1039/C1NR11049G
6. Dacheng Wei, Yunqi Liu, Yu Wang, Hongliang Zhang, Liping Huang, Gui Yu. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and its Electrical Properties. Nano Lett. 2009. 9(5): 1752. https://doi.org/10.1021/nl803279t
7. Sawada K., Ishii F., Saito M., Okada S., Kawai T. Phase Control of Graphene Nanoribbon by Carrier Doping: Appearance of Noncollinear Magnetism. Nano Lett. 2009. 9(1): 269. https://doi.org/10.1021/nl8028569
8. Dai Y., Long H., Wang X., Wang Y., Gu Q., Jiang W., Wang Y., Li C., Zeng T.H., Sun Y., Zeng J. Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Charact. 2014. 31: 597. https://doi.org/10.1002/ppsc.201300268
9. Nakada K., Fujita M., Dresselhaus G., Dresselhaus M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B. 1996. 54(24): 17954. https://doi.org/10.1103/PhysRevB.54.17954
10. Brey L., Fertig H. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B. 2006. 73: 235411 https://doi.org/10.1103/PhysRevB.73.235411
11. Niimi Y., Matsui T., Kambara H., Tagami K., Tsukada M., Fukuyama Hiroshi. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B. 2006. 73: 085421. https://doi.org/10.1103/PhysRevB.73.085421
12. Kobayashi Y., Fukui K., Enoki T., Kusakabe K. Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B. 2006. 73: 125415. https://doi.org/10.1103/PhysRevB.73.125415
13. Karpenko O.S., Lobanov V.V., Kartel N.T. Properties of hexagon-shaped carbon nanoclusters. Him. Fiz. Tehnol. Poverhni. 2013. 4(2): 123. https://doi.org/10.15407/hftp04.02.123
14. Karpenko O.S., Lobanov V.V., Kartel N.T. Structure and Properties Carbon Hexagonal Nanoclusters Containing One and Two Single Vacancies. Poverkhnya (Surface). 2013. 5: 5. [in Russian].
15. Parr R.G., Yang W. Density-functional theory of atoms and molecules. (Oxford: Oxford Univ. Press., 1989).
16. Becke A.D. Density-functional thermochemistry. III. The role of exchange. J. Chem. Phys. 1993. 98: 5648. https://doi.org/10.1063/1.464913
17. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of theelectron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785
18. Usachov D.Y., Fedorov A.V., Vilkov O.Y., Senkovski B.V., Adamchyk V.K. Synthesis and electronic structure of graphene doped with nitrogen atoms. Solid State Phys. 2013. 55(6): 1231. [in Russian]. https://doi.org/10.1134/S1063783413060310
19. Chemical encyclopedia. V. 3. (Moscow: Sovietskaya encyclopedia, 1992).
20. Neiland O.Y. Organic Chemistry. (Moscow: Vishaya shkola, 1990). [in Russian].
21. Drago R.S. Physical Methods in Chemistry. (Philadelphia, PA: W.B. Saunders Publishing Company, 1977).
22. Zigban K., Nordling K., Falman A. Electron Spectroscopy. Band 2. (Moscow: Mir, 1971). [in Russian].
23. Yamada Y., Kim J., Matsuo S., Sato S. Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon. 2014. 70: 59. https://doi.org/10.1016/j.carbon.2013.12.061
24. Yamada Y., Yasuda H., Murota K., Nakamura M, Sodesawa T., Sato S. Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J. Mater. Sci. 2013. 48: 8171. https://doi.org/10.1007/s10853-013-7630-0
DOI: https://doi.org/10.15407/hftp07.02.157
Copyright (©) 2016 O. S. Karpenko, V. V. Lobanov, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.