Цитотоксична активність магнітокерованих нанокомпозитів на основі доксорубіцину на прикладі клітин Saccharomyces Cerevisiae
DOI: https://doi.org/10.15407/hftp07.02.236
Анотація
Ключові слова
Посилання
1. Levy L., Sahoo Y., Kim K.-S., Bergey E.J., Prasad P. Synthesis and characterization of multifunctional nanoclinics for biological applications. Chem. Mater. 2002. 14: 3715. https://doi.org/10.1021/cm0203013
2. Shpak A.P., Gorbyk P.P. Nanomaterials and supramolecular structures. Physics chemistry and applications. (Springer, 2009).
3. Gorbyk P.P., Chekhun V.F. Nanocomposites of medicobiologic destination: reality and perspectives for oncology. Functional materials. 2012. 19(2): 145.
4. Gorbyk P.P., Lerman L.B., Petranovska A.L., Turanska S.P. Advances in semiconductor research: physics of nanosystems, spintronics and technological applications. Magnetosensitive nanocomposites with functions of medico-biological nanorobots: synthesis and properties. Chapter 9. (New York: Nova Science Publishers, 2014). P. 161.
5. Davaran S., Alimirzalu S., Nejati-Koshki K., Nasrabadi H.T., Akbarzadeh A., Khandaghi A.A., Abbasian M., Alimohammadi S. Physicochemical characteristics of Fe3O4 magnetic nanocomposites based on poly(N-isopropylacrylamide) for anti-cancer drug delivery. Asian Pac. J. Cancer Prev. 2014. 15(1): 49. https://doi.org/10.7314/APJCP.2014.15.1.49
6. Anirudhan T.S., Sandeep S. Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J. Mater. Chem. 2012. 22: 12888. https://doi.org/10.1039/c2jm31794j
7. Sadighian S., Hosseini-Monfared H., Rostamizadeh K., Hamidi M. pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Adv. Pharm. Bull. 2015. 5(1): 115.
8. Prylutska S.V., Didenko G.V., Potebnya G.P., Bogutska K.I., Prylutskyy Yu.I., Ritter U., Scharff P. Toxic effect of C60 fullerene-doxorubicin complex towards normal and tumor cells in vitro. Biopolym. Cell. 2014. 30(5): 372. https://doi.org/10.7124/bc.0008B4
9. Prylutska S., Grynyuk I., Matyshevska O., Prylutskyy Yu., Evstigneev M., Scharff P., Ritter U. C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R D. 2014. 14(4): 333. https://doi.org/10.1007/s40268-014-0074-4
10. Prylutska S.V., Korolovych V.F., Prylutskyy Yu.I., Evstigneev M.P., Ritter U., Scharff P. Tumor-inhibitory effect of C60 fullerene complex with doxorubicin. Nanomed. Nanobiol. 2014. 1(2): 1.
11. Orel V.E., Mitrelias T., Tselepi M., Golovko T., Nikolov N., Romanov A., Rykhalskiy A., Barnes C., Yaroshenko O., Orel I., Supruniuk I., Shchepotin I. Imaging of Guerin carcinoma during magnetic nanotherapy. J. Nanopharmaceutics Drug Delivery. 2014. 2: 1. https://doi.org/10.1166/jnd.2014.1044
12. Panchuk R.R., Prylutska S.V., Chumak V.V., Skorokhyd N.R., Lehka L.V., Evstigneev M.P., Prylutskyy Yu.I., Berger W., Heffeter P., Scharff P., Ritter U., Stoika R.S. Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J. Biomed. Nanotechnol. 2015. 11(7): 1139. https://doi.org/10.1166/jbn.2015.2058
13. Afanasieva K.S., Prylutska S.V., Lozovik A.V., Bogutska K.I., Sivolob A.V., Prylutskyy Yu.I., Ritter U., Scharff P. C60 fullerene prevents genotoxic effect of doxorubicin on human lymphocytes in vitro. Ukr. Biochem. J. 2015. 87(1): 91. https://doi.org/10.15407/ubj87.01.091
14. Prylutska S., Skivka L., Didenko G., Prylutskyy Yu., Evstigneev M., Potebnya G., Panchuk R., Stoika R., Ritter U., Scharff P. Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Res. Lett. 2015. 10(499): 1. https://doi.org/10.1186/s11671-015-1206-7
15. Orel V., Shevchenko A., Romanov A., Tselepi M., Mitrelias T., Barnes C.H.W., Burlaka C.H.W., Lukin S., Shchepotin I. Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin. Nanomed. Nanotechnol. Biol. Med. 2015. 11(1): 47. https://doi.org/10.1016/j.nano.2014.07.007
16. Kule C., Ondrejickova O., Verner K. Doxorubicin, daunorubicin, and mitoxantrone cytotoxicity in yeast. Mol. Pharmacol. 1994. 46(6):1234.
17. Patel S., Sprung A.U., Keller B.A., Heaton V.J., Fisher L.M. Identification of yeast DNA topoisomerase II mutants resistant to the antitumor drug doxorubicin: implications for the mechanisms of doxorubicin action and cytotoxicity. Mol. Pharmacol. 1997. 52(4): 658.
18. Saenko Yu.V., Shutov A.M., Rastorgueva E.V. Doxorubicin and menadione reduce cell proliferation of Saccharomyces cerevisiae by different mechanisms. Cytology. 2010. 52(5): 407 [in Russian].
19. Petranovska A.L., Abramov M.V., Turanska S.P., Gorbyk P.P., Kusyak A.P. Magnetic fluids based on magnetite and doxorubicin for targeted delivery of drug. Him. Fiz. Tehnol. Poverhni. 2015. 6(3): 343 [in Ukrainian].
20. Kusyak A.P., Turanska S.P., Petranovska A.L., Gorbyk P.P. Adsorption of cis-dichlorodiammineplatinum by magnetosensitive nanocomposites Fe3O4/SiO2 (TiO2, Al2O3). Novel ways to solve actual problems of basic fields, ecology, energy and resource preservation. In: Kazantip-Eco-2014. XXII international conf. (Khar'kov, 2014). 1: 37 [in Ukrainian].
21. Semko L.S., Gorbyk P.P., Storozhuk L.P., Dz'ubenko L.S., Dubrovin I.V., Oranska O.I. Modification of magnetite with silicon dioxide. Physics and Chemistry of Solid State. 2007. 8(3): 526 [in Ukrainian].
22. Kovalenko A.S., Grin' S.V., Il'in V.G. Peculiarities of template synthesis of mesoporous materials based on titano-silicic ethers. Theor. Exp. Chem. 2004. 40(1): 52. https://doi.org/10.1023/B:THEC.0000020766.31010.2c
23. Semko L.S., Gorbyk P.P., Chuiko O.O., Storozhuk L.P., Dubrovin I.V., Oranska O.I., Revo S.L. Modification of magnetite with titanium dioxide and properties of the obtained nanocomposites. Reports of NAS of Ukraine. 2007. 2: 150 [in Ukrainian].
24. Turov V.V., Gorbik S.P. Determination of adhesion powers at cell/water interface from the data of H NMR spectroscopy. Ukrainian chemical journal. 2003. 69(6): 80 [in Russian].
25. Turov V.V., Gorbik S.P., Chuiko A.A. Influence of dispersed silica on bound water in frozen cellular suspensions. Cryobiology problems. 2002. 3: 16 [in Russian].
26. Gorbyk P.P., Turov V.V. Nanomaterials and nanocomposites in medicine, biology, ecology. (Kyiv: Naukova dumka, 2011) [in Russian].
27. Babaeva I.P., Chernov I.Yu. Yeast biology. (T-vo of scien. edit. KMK, 2004) [in Russian].
28. Medical chemistry and clinical application of silicon dioxide. (Ed. Chuiko A.A.). (Kyiv: Naukova dumka, 2003) [in Russian].
29. Turov V.V., Gun'ko V.M. Clustered water and ways of its using. (Kyiv: Naukova dumka, 2011) [in Russian].
30. Turanska S.P., Turov V.V., Gun'ko V.M., Bogatyrev V.M. Water associates in partly dehydrated yeast and on hydrophobic silica surface. Coll. Chemistry, Physics and Technology of Surface. (Kyiv: Vyd. dim «KM Academy», 2004). 10: 207 [in Ukrainian].
31. Turov V.V., Gun'ko V.M., Bogatyrev V.M., Zarko V.I., Gorbik S.P., Pakhlov E.M., Leboda R., Shulga O.V., Chuiko A.A. Structured water in partially dehydrated yeast cells and at partially hydrophobized fumed silica surface. J. Colloid Interface Sci. 2005. 283: 329. https://doi.org/10.1016/j.jcis.2004.09.046
DOI: https://doi.org/10.15407/hftp07.02.236
Copyright (©) 2016 S. P. Turanska, A. P. Kusyak, A. L. Petranovska, S. V. Gorobez', V. V. Turov, P. P. Gorbyk
This work is licensed under a Creative Commons Attribution 4.0 International License.