Хімія, фізика та технологія поверхні, 2017, 8 (2), 133-142.

Вплив гідроксиду калію на структуру і розвиток поверхні бурого вугілля при лужній активації



DOI: https://doi.org/10.15407/hftp08.02.133

V. O. Kucherenko, Yu. V. Tamarkina, G. F. Rayenko

Анотація


Досліджено зміни структури та характеру термолізу бурого вугілля, які обумовлені интеркалюванням KOH при співвідношенні луг/вугілля RKOH≤15 ммоль/г. На залежностях глибини змін від RKOH ідентифіковано дві області I і II. В області I (RKOH≤6 ммоль/г) всі протони ОН-груп заміщені іонами K+, швидкість виділення летких продуктів при 300 °С (ω300) лінійно знижується, вихід твердих продуктів при 800 °С змінюється по кривій з максимумом, а SBET – по кривій з мінімумом внаслідок лужного промотування реакцій конденсації. В області II (RKOH>6 ммоль/г) зростають об’єм вугільних кристалітів (з 1.37 до 2.05 нм3) і швидкість ω300 за рахунок підвищення вкладу гетеролізу С-О та С-С зв’язків. Здатність KОН розвивати SBET, що оцінюється коефіцієнтом KЕФ=∆SBET/∆RKOH, максимальна (KЕФ=200–300 м2/ммоль) в інтервалі RKOH=2.5-4.0 ммоль/г, в якому каталіз пороутворюючих реакцій може бути найбільш ефективним.

Ключові слова


буре вугілля; гідроксид калію; просторова структура; активація; питома поверхня

Повний текст:

PDF (Русский)

Посилання


1. Marsh H., Rodriguez-Reinoso F. Activated carbon. (Amsterdam: Elsevier, 2006).

2. Gonzalez A., Goikoleva E., Barrena J.A., Mysyk R. Review on supercapacitors: technologies and materials. Renewable Sustainable Energy Rev. 2016. 58: 1189. https://doi.org/10.1016/j.rser.2015.12.249

3. Yoshizawa N., Maruyama K., Yamada Y., Ishikawaa E., Kobayashia M., Toda Y., Shiraishi M. XRD evaluation of KOH activation process and influence of coal rank. Fuel. 2002. 81(13): P. 1717. https://doi.org/10.1016/S0016-2361(02)00101-1

4. Lillo-Ródenas M.A., Marco-Lozar J.P., Cazorla-Amorós D., Linares-Solano A. Activated carbons prepared by pyrolysis of mixtures of carbons precursor/alkaline hydroxide. J. Anal. Appl. Pyrolysis. 2007. 80(1): 166. https://doi.org/10.1016/j.jaap.2007.01.014

5. Mikova N.M., Chesnokov N.V., Kuznetsov B.N. Study of high porous carbons prepared by the alkaline activation of anthracites. Journal of Siberian Federal University. Chemistry. 2009. 2(1): 3.

6. He X., Geng Y., Qiu J. et al. Influence of KOH/coke mass ratio on properties of activated carbons made by microwave-assisted activation for electric double-layer capacitors. Energy Fuels. 2010. 24(6): 3603. https://doi.org/10.1021/ef100228b

7. Vilaplana-Ortego E., Lillo-Ródenas M.A., Alca-iz-Monge J., Cazorla-Amorós D., Linares-Solano A.Isotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation. Carbon. 2000. 47(8): 2141. https://doi.org/10.1016/j.carbon.2009.04.020

8. Zhang H., Bhat V.V., Feng P.X., Contescua C.I., Gallego N.C. Effect of potassium-doping on the microstructure development in polyfurfuryl alcohol-derived activated carbon. Carbon. 2012. 50(14): 5278. https://doi.org/10.1016/j.carbon.2012.07.012

9. Zhu Y., Murali S., Stoller M.D., Ganesh K.J., Cai W., Ferreira P.J., Pirkle A. Carbon-based supercapacitors produced by activation of graphene. Science. 2011. 332(6037): 1537. https://doi.org/10.1126/science.1200770

10. Tamarkina Yu.V., Kucherenko V.A., Shendrik T.G. Surface area development of coal under thermolysis in the presence of potassium hydroxide. Russ. J. Appl. Chem. 2004. 77(9): 1452. [in Russian]. https://doi.org/10.1007/s11167-005-0049-x

11. Bleda-Martínez M.J., Maciá-Agulló J.A., Lozano-Castelló D., Morallón E., Cazorla-Amorós D., Linares-Solano A. Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon. 2005. 43(13): 2677. https://doi.org/10.1016/j.carbon.2005.05.027

12. Amarasekera G., Scarlett M. J., Mainwaring D.E. Development of microporosity in carbons derived from alkali digested coal. Carbon. 1998. 36(7–8): 1071. https://doi.org/10.1016/S0008-6223(98)00079-7

13. Tamarkina Yu.V., Kucherenko V.A., Shendrik T.G. Preparation of nanoporous adsorbents from brown coal using alkali activation and thermal shock. Him. Fiz. Tehnol. Poverhni. 2012. 3(2): 133.

14. Saranchuk V.I., Butuzova L.F., Minkova V.N. Thermochemical destruction of brown coals. (Kyiv: Naykova Dumka, 1993). [in Russian].

15. Li M., Zeng F., Chang H., Xu B., Wang W. Aggregate structure evolution of low-rank coals during pyrolysis by in situ X-ray diffraction. Coal Geology. 2013. 116-117: 262. https://doi.org/10.1016/j.coal.2013.07.008

16. Dun W., Guijian L., Ruoyu S., Xiang F. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction. Energy Fuels. 2013. 27(10): 5823. https://doi.org/10.1021/ef401276h

17. Vishnevsriy V.Yu., Kucherenko V.A. Supermolecular structure of activated acrbons obtained bu alkali activation of different rank coals. Voprosy himii I himicheskoi tehnologii. 2014. 5-6(98): 4. [in Russian].

18. Wertz J.E., Bolton J.R. Electron Spin Resonance. Elementary theory and practical applications. (N.-Y.: McGraw-Hill Book Company, 1972).

19. Saranchuk V.I., Ruschev D., Semenenko V.K. Oxidation and ignition of solid fuel. (Kyiv: Naykova Dumka, 1994). [in Russian].

20. Lazarov L., Angelova G. Structure and reactions of coals. (Sofia: Publ. of Bulgaria Academy of Sciences, 1990). [in Russian].

21. Bellamy L.J. The infrared spectra of complex molecules. (London: Chapman and Hall Ltd, third edition, 1975). https://doi.org/10.1007/978-94-011-6017-9

22. Orlov D.S., Osipova N.N. Infrared spectra of soils and soil components. (Moscow: Publ. of Moscow University, 1988). [in Russian].

23. Nesmeyanov A.N., Nesmeyanov N.A. Bases of inorganic chemistry. (Moscow: Chemistry, 1974). [in Russian].

24. Clar E. Polycyclic Hydrocarbons. (New York: Academic Press, 1964).

25. Tamarkina Yu.V., Bovan L.A., Kucherenko V.A. Humic acids formation under thermolysis of brown coal with potassium hydroxide. Voprosy himii I himicheskoi tehnologii. 2008. 2: 112. [in Russian].

26. Tamarkina Yu.V., Kucherenko V.A., Shendrik T.G. Alkali activation af coals and carbon materials. Solid Fuel Chemistry. 2014. 48(4): 251. https://doi.org/10.3103/S0361521914040119

27. Yamashita Y., Ouchi K. Influence of alkali on the carbonization process – II. Carbonization of various coals and asphalt with NaOH. Carbon. 1982. 20(1): 47. https://doi.org/10.1016/0008-6223(82)90073-2

28. Lu C., Xu S., Wang M., Liu Ch. Effect of pre-oxidation on the development of porosity in activated carbons from petroleum coke. Carbon. 2007. 45(1): 206. https://doi.org/10.1016/j.carbon.2006.10.003




DOI: https://doi.org/10.15407/hftp08.02.133

Copyright (©) 2017 V. O. Kucherenko, Yu. V. Tamarkina, G. F. Rayenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.