Хімія, фізика та технологія поверхні, 2010, 1 (4), 465-472.

Вплив органічних розчинників і доксорубіцину на кластеризацію води, що зв’язана ДНК



V. V. Turov, V. F. Chekhun, V. M. Gun'ko, V. M. Barvinchenko, S. V. Chekhun, A. V. Turov

Анотація


Показано, що вода, зв’язана молекулами ДНК, перебуває у вигляді кластерів, які відповідають, сильноасоційованій воді (SAW), двом типам слабоасоційрованой (WAW) а також кристалізаційній воді, зв’язаної з основними центрами. Слабополярне середовище хлороформу стабілізує слабоасоційовані форми води, в той час як добавки полярного ДМСО перешкоджають формуванню одного з типів WAW. Інтеркалювання гідратованих молекул ДНК доксорубіцином зменшує кількість WAW і збільшує кількість SAW.

Повний текст:

PDF (Русский)

Посилання


Watson J., Crick F. Molecular structure of nucleic acids; a structure of deoxyrybose nucleic acid // Nature. – 1953. – V. 36, N 1. – P. 737–738.

Baston M., Castro V., Mrevlishvili G., Teixera J. Hydration of ds-DNA and ss-DNA by neutron quasielastic scattering // Biophys. J. – 2004. – V. 86, N 6. – P. 3822–3827.

Parrot I.M., Laux V., Urban V. et al. X-rays and neutron for study of DNA structure, hydration, and transition // Physica B. – 2006. – V. 385–386, N 3. – P. 848–852.

Albiser G., Lamiri A., Premilat S. The A-B transition: temperature and base composition effect on hydration of DNA // Int. J. Biolog. Macromol. – 2001. – V. 28, N 3. – P. 199–203.

Schneider B., Patel K., Berman H.M. Hydration of the phosphate group in double-helical DNA // Biophys. J. – 1998. – V. 75, N 5. – P. 2422–2434.

Зенгер В. Принципы структурной организации нуклеиновых кислот. – Москва: Мир, 1987. – 584 с.

Clark G.R., Squire Ch.J., Baker L.J. et al. Intermolecular interactions and water structure in a condensed phase B-DNA crystal // Nucleic Acids Res. – 2000. – V. 28, N 4. – P. 1259–1265.

Soler-Lopez M., Malinina L., Liu J. et al. Water and Ions in a High Resolution Structure of B-DNA // J. Biolog. Chem. – 1999. – V. 274, N 6. – P. 23683–23686.

Tao N. J., Lindsay S. M., Rupprecht A. Structure of DNA hydration shells studied by Raman spectroscopy // Biopolymers. – 1998. – V. 28, N 6. – P. 1019–1030.

Castrignano T., Chillemi G., Desideri A. Structure and Hydration of BamHI DNA Recognition Site: A Molecular Dynamics Investigation // Biophys. J. – 2000. – V. 79, N 5. – P. 1263–1272.

Schneider B. Berman H. Hydration of DNA bases is local // Biophys. J. – 1995. – V. 69, N 6. – P. 2661–2669.

Lipscomb L.A., Peek M.E., Zhou F.X. et al. Water Ring Structure at DNA Interfaces: Hydration and Dynamics of DNA-Anthracycline Complexes // Biochemistry. – 1994. – V. 33, N 12. – P. 3649–3659

Gun’ko V.M., Turov V.V., Bogatyrev V.M. et al. Unusual properties of water at hydrophilic/hydrophobic Interfaces // Adv. Colloid. Interf. Sci. − 2005 − V. 118, N 1–3. − P. 125 – 172.

Гунько В.М., Туров В.В., Горбик П.П. Вода на межфазной границе. – Киев: Наукова думка, 2009. – 694 с.

Turov V.V., Leboda R. Application of 1H NMR Spectroscopy Method for Determination of Characteristics of Thin Layers of Water Adsorbed on the Surface of Dispersed and Porous Adsorbens // Adv. Colloid Interface Sci. – 1999. – V. 79, N 2–3. – P. 173–211.

Gun'ko V.M., Turov V.V. Structure of Hydrogen Bonds and 1H NMR Spectra of Water at the Interface of Oxides // Langmuir. − 1999 − V. 15, N 19. − P. 6405−6415.

Kinney D.R., Chaung I.-S., Maciel G.E., Water and the Silica Surface As Studied by Variable Temperature High Resolution 1H NMR. // J. Am. Chem. Soc. – 1993. – V. 115, N 15. – P. 6786–6794.

Liao L.B., Zhou H.Y., Xiao X.M. Spectroscopic and viscosity study of doxorubicin interaction with DNA // J. Molecular Structure. – 2005. – V. 749, N 1–3. – P. 108–113.

Dunkern T.R., Wedemeyer I., Baumgartner M. et al. Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling // DNA Repair. – 2003. – V. 2, N 1. – P. 49–60.

Messori L., Temperini C., Piccioli F. et al. Solution chemistry and DNA binding properties of MEN 10755, a novel disaccharide analogue of doxorubicin // Bioorganic & Medicinal Chemistry. – 2001. – V. 9, N 7. – P. 1815–1825.

Tokarska-Schlattner M., Zaugg M., Zuppinger Ch. et al. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics // J. Mol. Cell. Cardiol. – 2006. – V. 41, N 3. – P. 389–405.

Термодинамические свойства индивидуальных веществ / Под ред. В.П. Глушкова. – Москва: Наука, 1978. – 495 c.

Stewart J.J.P. MOPAC2009, Stewart Computational Chemistry [Electronic resource]. – URL: http://openmopac.net/.

Pedretti A., Villa L., Vistoli G. VEGA – an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming // J. Computer-Aided Mol. Design. – 2004. – V. 18, N 2. – Р. 167–173.

Abragam A. The Principles of Nuclear Magnetism. – Oxford: Oxford University Press, 1961. – 599 p.

Mandelkern M., Elias J., Eden D., Crothers D. The dimentions of DNA in solutions // J. Mol. Biol. – 1981. – V. 152, N 1. – P. 153–161.

Turov V.V., Kerus S.V., Gun’ko V.M. Behaviour of water bound in bone marrow cells affected by organic solvents of different polarity // Cryobiology. – 2009. – V. 59, N 1. – P. 102–112.




Copyright (©) 2010 V. V. Turov, V. F. Chekhun, V. M. Gun'ko, V. M. Barvinchenko, S. V. Сhekhun, A. V. Turov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.