Кінетична теорія магнітного поглинання лазерного опромінювання металевими наночастинками
DOI: https://doi.org/10.15407/hftp14.04.504
Анотація
При освітленні металевих наночастинок (МНЧ) монохроматичною лазерної хвилею, частота якої далека від плазмонної частоти (частоти плазмонних резонансів), при певних умовах (залежно від частоти хвилі, її поляризації, розміру та форми МНЧ), поглинанні світла МНЧ може домінувати магнітне поглинання (поглинання, спричинене магнітною складовою електромагнітного поля світлової (лазерної) хвилі). Ця робота сконцентрована на вивченні особливостей поглинання, зумовленого впливом магнітної компоненти лазерного випромінювання. Це питання досить маловивчене для МНЧ несферичної форми. Тому те, як проявляється форма частинки в поглинанні нею лазерного випромінювання (лазерних імпульсів) є однією з цілей нашого дослідження. У цій роботі вивчатимемо особливості магнітного поглинання світла (лазерного випромінювання) в залежності від форми частинок. В роботі ми досліджуватимемо вплив на цей процес МНЧ сфероїдальної форми. Розрахунки проводитимемо методом кінетичного рівняння, тому що розглядатимемо випадок, коли розмір МНЧ менший від довжини вільного пробігу електрона в МНЧ. Зауважимо, що кінетичний підхід дає змогу отримати правильні результати для випадку, коли розмір частинки більший за довжину вільного пробігу. Для МНЧ несферичної форми нами розроблено теорію, яка має змогу обчислити енергію магнітного поглинання частинками при її опроміненні лазерними імпульсами. Побудовано і теоретично досліджено залежність магнітного поглинання від відношення радіусів кривизни сфероїдальних МНЧ і вектором магнітного поля електромагнітної (лазерної) хвилі. Цікавим результатом є поглинання енергії сфероїдальною МНЧ у міру зростання її дископодібності. Тепер ми використовуємо для оцінки відносного внеску електричного та магнітного поглинання в загальне поглинання. Наприклад, візьмемо золоті МНЧ ωp ≈ 5·1015 s–1, ν ≈ 1013 s–1, R = 3·10–6 sm, ω ≈ 2·1014 s–1 (вуглекислотний лазер), ε' ≈ –600, ε'' ≈. Ми отримали наступне співвідношення We/Wm ≈ 2. Ми бачимо, що для даного набору параметрів магнітне поглинання вдвічі більше, ніж електричне. Очевидно, що для різних параметрів частинки і різного діапазону частот електричне поглинання може бути як більшим, так і меншим, ніж магнітне. Отже, вивчаючи залежність оптичного поглинання МНЧ від форми частинок, ми повинні враховувати як електричне, так і магнітне поглинання. Для асиметричних МНЧ (наприклад, еліпсоїдальних частинок), окрім усього іншого, співвідношення електричних і магнітних внесків у поглинання (як фіксована частота) сильно залежить від ступеня асиметричності частинок і хвильової поляризації.
Ключові слова
Посилання
1. Boren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. (New York City: Wiley, 1983).
2. van de Huls H.C. Light Scattering by Small Particles. (New York City: Wiley, 1957). https://doi.org/10.1063/1.3060205
3. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. (Berlin: Springer, 1995). https://doi.org/10.1007/978-3-662-09109-8
4. Venger E.F., Goncharenko A.V., Dmitruk M.L. Optics of Small Particles and Disperse Media. (Kyiv: Naukova Dumka, 1999). [in Ukrainian].
5. Landau L.D., Lifshitz E.M. Electrodynamics of Continuous Media. (New York: Oxford Pergamon Press, 1984). https://doi.org/10.1016/B978-0-08-030275-1.50007-2
6. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik. 1908. 25: 377. https://doi.org/10.1002/andp.19083300302
7. Tomchuk P.M., Tomchuk B.P. Optical absorption by small metal particles. J. Exp. Theor. Phys. 1997. 85: 360. https://doi.org/10.1134/1.558284
8. Dykman I.N., Tomchuk P.M. Phenomena of transfer and fluctuations in semiconductors. (Kyiv: Naukova Dumka, 1982). [in Ukrainian].
9. Semchuk O.Yu., Havriliuk O.O., Biliuk A.A. Kinetic theory of surface plasmon resonance in metal nanoparticles. Surface. 2020. 12(27): 3. [in Ukrainian]. https://doi.org/10.15407/Surface.2020.12.003
DOI: https://doi.org/10.15407/hftp14.04.504
Copyright (©) 2023 O. Yu. Semchuk, O. O. Havryliuk, A. A. Biliuk
This work is licensed under a Creative Commons Attribution 4.0 International License.