Nanocomposite LiFePO<sub>4</sub>/C as cathode material for high-rate lithium-ion batteries
Keywords:
lithium-iron phosphate, lithium-ion battery, high-rate dischargeAbstract
Using a citric acid route, precursors have been synthesized and nanocomposites LiFePO4/C have been obtained by means of heat treatment having the particle size ca. 20 nm, specific surface area of more than 60 m2/g and the regulated content of carbon (7.6 to 12.5 wt. %). The properties of materials have been studied by thermal analysis, thermally programmed destruction, porosimetry, electronic microscopy; electrochemical characteristics have been evaluated in potentiodynamic and galvanostatic regimes. The composites obtained have specific capacity up to 134 mAh/g and demonstrate a capability of high rate discharge. In particular, upon loading with the current of 8500 mA/g (50 С), the sample containing 12.5% of carbon completely recovers its specific capacity. This signifies good prospects for the use of this material in high-rate electrochemical devices.References
1. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries // J. Electrochem. Soc. – 1997. – V. 144, N 4. – P. 1188–1194.
2. Махонина Е.В., Первов В.С., Дубасова В.С. Оксидные материалы положительного электрода литий-ионных аккумуляторов // Усп. химии. – 2004. – Т. 73, № 10. – С. 1075–1083.
3. Whittingham M.S. Lithium batteries and cathode materials // Chem. Rev. – 2004. – V. 104, N 10. – P. 4271–4301.
4. Yamada A., Chung S.C., Hinokuma K. Optimized LiFePO4 for lithium battery cathodes // J. Electrochem. Soc. – 2001. – V. 148, N 3. – P. A224–229.
5. Chung S.Y., Chiang Y.M. Microscale measurements of the electrical conductivity of doped LiFePO4 // Electrochem. Solid-State Lett. – 2003. – V. 6, N 12. – P. A278–A281.
6. Prosini P.P., Lisi M., Zane D., Pasquali M. Determination of chemical diffusion coefficient of lithium in LiFePO4 // Solid State Ionics. – 2002. – V. 148, N 1–2. – P. 45‑51.
7. Yang M.-R., Ke W.-H. The doping effect on the electrochemical properties of LiFe0,95M0,05PO4 (M=Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells // J. Electrochem. Soc. – 2008. – V. 155, N 10. – P. A729–A732.
8. Chiang Y.-M., Chung S.-Y., Bloking J.T., Anderson A.M. Conductive lithium storage electrode // Patent USА 7,338,734, B2, March 4, 2008.
9. Aricò A.S., Bruce P., Scrosati B. et al. Nanostructured materials for advanced energy conversion and storage devices // Nature materials. – 2005. – V. 4, N 5. – P. 366–377.
10. Sinha N.N., Munichandraiah N. The effect of particle size on performance of cathode materials of Li-ion batteries // J. Indian Inst. Sci. – 2009. – V. 89, N. 4 – P. 389–392.
11. Park O.K., Cho Y., Lee S. et al. Who will drive electric vehicles, olivine or spinel? // Energy Environ. Sci. – 2011 – V. 4, N 5. – P. 1621–1633.
12. Liu H., Wang G.X., Wexler D. et al. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer // Electrochem. Commun. – 2008. – V. 10, N 1. – P. 165–169.
13. Park K.S., Son J.T., Chung H.T. et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4// Solid State Commun. 2004. – V. 129, N 5. – P. 311–314.
14. Kang B., Ceder G. Battery materials for ultrafast charging and discharging // Nature. – 2009. – V. 458, N 7235. – P. 190–193.
15. Huang H., Yin S.C., Nazar L. Approaching theoretical capacity of LiFePO4 at room temperature at high rates // Electrochem. Solid-State Lett. – 2001. – V. 4, N 10. – P. A170–172.
16. Chen Z., Dahn J.R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density // J. Electrochem. Soc. – 2002. – V. 149, N 9. – P. A1184–1189.
17. Kuwahara A., Suzuki S., Miyayama M. High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries // Ceramics International. – 2008. – V. 34, N 4. – P. 863–866.
18. Gabrich H., Wilcox J.D., Doeff M.D. Carbon surface layers on high-rate LiFePO4 // Electrochem. Solid-State Lett. – 2006. – V. 9, N 7. – P. A360–A363.
19. Chiu K.-F., Tang H.-Y., Lin B.-S. High conductivity LiFePO4/C composite thin films with Ti underlayers deposited by radio frequency sputtering // J. Electrochem. Soc. – 2007. – V. 154, N 4. – P. A364–A368.
20. Gaberscek M., Dominko R., Jamnik J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes // Electrochem. Commun. – 2007. – V. 9, N 12. – P. 2778–2783.
21. Gaberscek M., Dominko R., Bele M. et al. Porous, carbon-decorated LiFePO4 prepared by sol-gel method based on citric acid // Solid State Ionics. – 2005. – V. 176, N 22. – P. 1801–1805.
22. Feng Y., Jingjie Z., Yanfeng Y., Guanghi S. Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method // Electrochim. Acta. – 2009. – V. 54, N 28. – P. 7389–7395.
23. Jugovic D., Uskokovic D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders // J. Power Sources. – 2009. – V. 190, N 2. – P. 538–544.
24. Kirillov S.A., Romanova I.V., Farbun I.A. Synthesis of mixed oxides using polybasic carboxylic hydroxy- and amino-acid routes: problems and prospects // New Carbon Based Materials for Electrochemical Energy Storage Systems, NATO Science Series. ‑ Springer, Dordrecht, 2006. – Р. 495–504.
25. Фарбун И.А., Романова И.В., Териковская Т.Е. и др. Комплексообразование при синтезе оксида цинка из цитратных растворов // Журн. прикл. химии. – 2007. – Т. 80, № 11. – С. 1773–1778.
26. Романова И.В., Фарбун И.А., Хайнаков С.А. и др. Исследование каталитических свойств материалов на основе оксидов переходных металлов и церия // Доп. НАН України. – 2008. – № 10. – C. 153–158.
27. Фарбун И.А., Романова И.В., Хайнаков С.А., Кириллов С.А. Свойства наноразмерных материалов на основе оксидов марганца и церия, полученных из цитратных растворов // Сб. Поверхность. – 2010. – Вып. 2 (17). – С. 197–204.
28. Wang B., Qiu Y., Yang L. Structural and electrochemical characterization of LiFePO4 synthesized by an HEDP–based soft–chemistry route // Electrochem. Commun. – 2006. – V. 8, N 11. – P. 1801–1805.
29. Zhang S.-F., Liu Z., Yang X.-G. et al. Unprecedented 5,5-connected (47 - 63) (48 - 62) structural topology: A lead biphosphonate with double layered structure // Inorg. Chem. Commun. – 2008. – V. 11, N 6. – P. 604–607.
30. Thakkar R., Chudasama U. Synthesis, characterization and proton transport properties of mixed metal phosphonate–zirconium titanium hydroxy ethylidene diphosphonate // J. Iran. Chem. Soc. – 2010. – V. 7, N 1. – P. 202–209.
Downloads
How to Cite
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.