Morphological and Electronic Characteristics of Nanoalumina Alone and in High-Temperature (Fumed) and Low-Temperature (Mechanical) Mixtures with Nanosilica

  • Ya. V. Zaulychnyy National Technical University of Ukraine «Kyiv Polytechnic Institute»
  • V. Ya. Ilkiv National Technical University of Ukraine «Kyiv Polytechnic Institute»
  • V. I. Zarko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • M. V. Karpetz Frantsevich Institute for Problems of Materials Science of National Academy of Sciences of Ukraine
  • M. V. Pereginiak National Technical University of Ukraine «Kyiv Polytechnic Institute»
  • S. S. Petrovska Frantsevich Institute for Problems of Materials Science of National Academy of Sciences of Ukraine
  • V. M. Gun'ko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
Keywords: nanoalumina, nanosilica, electronic structure, ultrasoft X-ray emission spectroscopy, X-ray diffraction

Abstract

Crystalline and electronic structures of nanoalumina alone and in different mixtures with nanosilica have been analyzed using X-ray diffraction (XRD) and ultrasoft X-ray emission spectroscopy (USXES). Narrowing of the OKαbands of crystalline alumina occurs with decreasing nanoparticle size. Electron transfer from oxygen to aluminum atoms due to Al–O bond breakage under irradiation leads to occupation of high-energy 3d level of Al. In nanoparticles, the Al–O bond strength and O–O interactions enhanced by Laplace (bubble) pressure lead to δ phase stabilizing if coherent-scattering region size (dCSR) reaches 7 nm which is smaller than that for θ phase (dCSR = 11–20 nm) of alumina and silica/alumina studied. The dCSR values are in agreement with nanoparticle sizes calculated using self-consistent regularization method applied to nitrogen adsorption data.

References

1. Fendler J.H. (Ed.) Nanoparticles and Nanostructured Films. (Weinheim: Wiley-VCH, 1998).  https://doi.org/10.1002/9783527612079

2. Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).

3. Swihart M.T. Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 2003. 8: 127.  https://doi.org/10.1016/S1359-0294(03)00007-4

4. Blitz J.P., Gun'ko V.M. (Eds.) Surface Chemistry in Biomedical and Environmental Science. NATO Science Series II: Mathematics, Physics and Chemistry. V. 228. (Dordrecht: Springer, 2006).https://doi.org/10.1007/1-4020-4741-X

5. Hubbard A.T. (Ed.) Encyclopedia of Surface and Colloid Science. (New York: Marcel Dekker, 2002).

6. Bergna H.E. (Ed.) Colloidal Silica: Fundamentals and Applications. (Salisbury, Taylor & Francis LLC, 2005).

7. Shpak A.P., Gorbik P.P. (Eds.) Nanomaterials and Supramolecular Structures: Physics, Chemistry and Applications. (Dordrecht: Springer, 2010).  https://doi.org/10.1007/978-90-481-2309-4

8. http://www.sipernat.com/sites /dc/Downloadcenter/Evonik/Product/SIPERNAT/11-01-344-vnd-ii-2242-katalysatoren-us.pdf.

9. Sposito G. (Ed.) The Environmental Chemistry of Aluminum. (Boca Raton: Second edition, Lewis Publishers, 2000).

10. Lin C., Chung D.D.L. Nanostructured fumed metal oxides for thermal interface pastes. J. Mater. Sci. 2007. 42: 9245.  https://doi.org/10.1007/s10853-007-1911-4

11. Zaulychnyy Ya.V., Foya O.O., Bekeniov V.L. Energy redistribution of valence electrons in anatase TiO2 due to decreasing nanoparticles sizes. Nanostructured Materials Science. 2009. 2: 103.

12. Gun'ko V.M., Zaulychnyy Ya.V., Ilkiv B.I., Zarko V.I., Nychiporuk Yu.M., Pakhlov E.M., Ptushinskii Yu.G., Leboda R., Skubiszewska-Zięba J. Textural and electronic characteristics of mechanochemically activated composites with nanosilica and activated carbon. Appl. Surf. Sci. 2011. 258(3): 1115.  https://doi.org/10.1016/j.apsusc.2011.09.047

13. Zaulychnyy Ya.V., Solonin Yu.M., Foya O.O. Energy redistribution of the valence electrons due to nanodispersion of materials and its evidence as determined by the ultrasoft X-ray emission spectra. Metallofizika i Noveishie Tekhnologii. 2008. 30: 169. [in Russian].

14. Zatsepin D.A., Cherkashenko V.M., Kurmaev E.Z., Shamin S.N., Fedorenko V.V., Skorikov N. X-ray emission study of the electronic structure of nanocrystaline Al2O3. Phys. Solid State. 2004. 46(11): 2064. [in Russian].  https://doi.org/10.1134/1.1825561

15. Toporov N.A., Barzakovskij V.P., Bondar I.A., Udalov Yu.P. Phase Diagrams of Silicate Systems. (Leningrad: Nauka, 1970). [in Russian].

16. Ishida Y., Ichinose H., Kizuka T., Suenaga K. High-resolution electron microscopy of interfaces in nanocrystalline materials. Nanostruct. Mater. 1995. 6(1–4): 115.  https://doi.org/10.1016/0965-9773(95)00035-6

17. Zaulychnyj Ya.V., Foya O.O., Gun'ko V.M., Zarko V.I., Myronyuk I.F., Gergel T.V., Chelyadyn V.L. The influence of nanoparticle size of fumed silica on energetic state of electronic structure. J. Phys. Chem. Solids. 2008. 9(4): 767.

18. Domashevskaya E.P., Manukovskii E.Yu., Kashkarov V.M., Shchukarev A.V., Terekhov V.A. XPS, USXS and PLS investigations of porous silicon. J. Electron. Spectrosc. Relat. Phenom. 1998. 88–91: 969.  https://doi.org/10.1016/S0368-2048(97)00274-0

19. Domashevskaya E.P., Yurakov Yu.A. Specific features of electron structures of some thin film d-silicides. J. Electron. Spectrosc. Relat. Phenom. 1998. 96(1–3): 195.  https://doi.org/10.1016/S0368-2048(98)00236-9

20. Katayama T., Anniyev T., Beye M., Coffee R., Dell'Angela M., Föhlisch A., Gladh J., Kaya S., Krupin O., Nilsson A., Nordlund D., Schlotter W.F., Sellberg J.A., Sorgenfrei F., Turner J.J., Wurth W., Öström H., Ogasawara H. Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser. J. Electron. Spectrosc. Relat. Phenom. 2013. 187: 9.  https://doi.org/10.1016/j.elspec.2013.03.006

21. Nordgren J., Guo J. Instrumentation for soft X-ray emission spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 2000. 110–111: 1.  https://doi.org/10.1016/S0368-2048(00)00154-7

22. Terekhov V.A., Kashkarov V.M., Manukovskii E.Yu., Schukarev A.V., Domashevskaya E.P. Determination of the phase composition of surface layers of porous silicon by ultrasoft X-ray spectroscopy and X-ray photoelectron spectroscopy techniques. J. Electron. Spectrosc. Relat. Phenom. 2001. 114–116: 895.  https://doi.org/10.1016/S0368-2048(00)00393-5

23. Dollase W.A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Cryst. 1986. 19: 267.  https://doi.org/10.1107/S0021889886089458

24. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. (London: Academic Press, 1982).

25. Nguyen C., Do D.D. A new method for the characterization of porous materials. Langmuir. 1999. 15(10): 3608.  https://doi.org/10.1021/la981140d

26. Provencher S.W. A constrained regularization method for inverting data. Comput. Phys. Commun. 1982. 27(3): 213.  https://doi.org/10.1016/0010-4655(82)90173-4

27. Gun'ko V.M., Bogatyrev V.M., Leboda R., Skubiszewska-Zięba J., Petrus L.V., Nychiporuk Y.M., Oranska O.I., Dudarko O.A., Osovskii V.D., Ptushinskii Y.G. Titania deposits on nanosilicas. Annales Universitatis Marie Curie-Sklodowska, Sectio Chemia. 2009. 64(3): 21.

28. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013).https://doi.org/10.1201/b14202

29. Romashchenko Yu.N. X-ray spectral investigation of electronic structure of oxoanions of aluminum and silica in oxides and minerals. Thesis abstract, Rostov-on-Don, 1978. [in Russian].

30. Brytov A.A., Romashchenko Yu.N. X-ray spectroscopic investigation of the electronic structure of silicon and aluminium oxides. Sov. Phys. Solid State. 1978. 20: 384. [in Russian].

How to Cite
ZAULYCHNYY, Y. V.; ILKIV, V. Y.; ZARKO, V. I.; KARPETZ, M. V.; PEREGINIAK, M. V.; PETROVSKA, S. S.; GUN’KO, V. M. Morphological and Electronic Characteristics of Nanoalumina Alone and in High-Temperature (Fumed) and Low-Temperature (Mechanical) Mixtures with Nanosilica. Chemistry, Physics and Technology of Surface, v. 5, n. 2, p. 136-144, 11.