Antiozonate activity of mono- and bimetal complexes of 3d-metals with salicylaliminopropyl groups immobilized on nanosilica
Abstract
The influence of metal nature and synthesis method (joint and separate adsorption) of bimetal complexes [M1-M2-L1] based on Mn(II), Co(II), Cu(II), Zn(II) and salicylaliminopropylaerosil on their activity in ozone decomposition reaction has been studied. The activity of monometal complexes is decreased in sequence Mn(ІІ)>>Сo(ІІ)>Cu(ІІ)>Zn(ІІ) and under introduction of second metal the antiozonate properties of bimetal complexes are reduced. It is pointed out that bimetal complexes synthesized by joint sorption are more active than those prepared by means of separate adsorption of metal ions.References
1. Yordanov N.D., Karadzhov Y. Studies on intermolecular interactions of metal chelate complexes. Part X. Interactions of metal chelates with ozone. Transition. Met. Chem. 1985. 10(1): 15. https://doi.org/10.1007/BF00620624
2. Yatsimirskii K.B., Chuiko A.A., Filippov A.P. Complexes of copper, molybdenum and palladium with nitrogen-containing ligands anchored on the silica surface. Dokl. AN SSSR. 1977. 237(5): 1137. [in Russian].
3. Rakitskaya T.L., Truba A.S., Raskola L.A., Bandurko A.Yu., Golub A.A. Effect of the structure of copper(II) complexes, adsorbed on the surface of SiO2, on their catalytic activity in ozone decomposition. Theor. Exp. Chem. 2006. 42(1): 60. https://doi.org/10.1007/s11237-006-0019-2
4. Rakitskaya T.L., Bandurko A.Yu., Truba A.S., Raskola L.A., Golub A.A. 3d metal complexes with 2-hydroxy-3-methoxybenzaliminopropyl and 4-hydroxy-3-methoxybenzaliminopropyl immobilized on aerosil as catalysts of ozone decomposition. Russ. J. Gen. Chem. 2006. 76(8): 1266. https://doi.org/10.1134/S1070363206080184
5. Rakitskaya T.L., Truba A.S., Golub A.A., Kiose T.A., Radchenko E.A. Effect of composition and structure of cobalt(II) complexes with oxyaldiminopropylaerosils on their catalytic activity in the decomposition of ozone. Theor. Exp. Chem. 2011. 47(5): 337. https://doi.org/10.1007/s11237-011-9224-8
6. Rakitskaya T.L., Truba A.S., Raskola L.A., Radchenko E.A., Strizhak A.V., Golub A.A. Antiozonante activity of the silica modified with 3d-metal complexes. Russ. J. Gen. Chem. 2013. 83(2): 360. https://doi.org/10.1134/S1070363213020205
7. Oyama S.T. Chemical and catalytic properties of ozone. Catal. Rev. Sci. Eng. 2000. 42(3): 279. https://doi.org/10.1081/CR-100100263
8. Kozhevnikov I.V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 1998. 98(1): 171. https://doi.org/10.1021/cr960400y
9. Virdis A., Viola A., Goo G. A novel kinetic mechanism of aqueous-phase ozone decomposition. Ann. Chim. 1995. 85: 633.
10. Westerhoff P., Song R., Amy G., Minear R. Applications of ozone decomposition models. Ozone Sci. Eng. 1997. 19(1): 55. https://doi.org/10.1080/01919519708547318
11. Nemes A., Fábian I., Eldik R. Kinetics and mechanism of the carbonate ion inhibited aqueous ozone decomposition. J. Phys. Chem. A. 2000. 104(34): 7995. https://doi.org/10.1021/jp000972t
12. Ulrich R.K., Rochelle G.T., Prada R.E. Enhanced oxygen absorption into bisulphite solutions containing transition metal ion catalysts. Chem. Eng. Sci. 1986. 41(8): 2183. https://doi.org/10.1016/0009-2509(86)87134-2
13. Ibusuki T., Takeuchi K. Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous solutions at environmental reaction conditions. Atmospheric Environment. 1987. 21(7): 1555. https://doi.org/10.1016/0004-6981(87)90317-9
14. McElroy W.J., Waygood S.J. Kinetics of the reactions of the SO4– radical with SO4–, S2O82–, H2O and Fe2+. J. Chem. Soc. Faraday Trans. 1990. 86(14): 2557. https://doi.org/10.1007/978-94-009-0567-2_39
15. Grgic I., Hudnik V., Bizjak M., Levec J. Aqueous S(IV) oxidation – II. Synergistic effects of some metal ions. Atmospheric Environment. 1992. 26A(4): 571. https://doi.org/10.1016/0960-1686(92)90170-P
16. Ermakov A.N., Larin I.K., Ugarov A.A., Purmal’ A.P. On catalysis of SO2 oxidation in atmosphere by iron ions. Kinetika i kataliz. 2003. 44(4): 524. [in Russian].
17. Rakitskaya T.L., Bandurko A.Y., Raskola L.A. Catalysts for low-temperature decomposition of ozone: the state and prospects of development. Bulletin of the Odessa National University. Chemistry. 2012. 6(7): 13. [in Russian].
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.