Хімія, фізика та технологія поверхні, 2016, 7 (2), 214-224.

Лазерний нагрів біметалевих наночастинок, які застосовуються в медицині



DOI: https://doi.org/10.15407/hftp07.02.214

L. B. Lerman, L. V. Porodko

Анотація


Розглянуто нагрів біметалевих сферичних наночастинок із срібним ядром і золотою оболонкою при дії лазерного випромінювання. Для однорідного поля, що діє вздовж осі кулі, в електростатичному наближенні знайдено просторовий розподіл енергії поля в частинці. Показано, що в ядрі енергія зберігає стале значення, а в оболонці складається з двох доданків у розкладах за поліномами Лежандра. Знайдено розв’язки рівняння теплопровідності для кулі в оболонці з внутрішніми джерелами тепла, інтенсивність яких визначається розподілом енергії електричного поля. Показано, що потрібну для загибелі онкоклітин температуру в ближньому околі частинки можна отримати при безпечній для організму потужності лазера.

Ключові слова


лазерний нагрів; біметалеві наночастинки; електростатична енергія; теплопровідність; рівняння Пуассона

Повний текст:

PDF (Русский)

Посилання


1. Baybecov I.M., Kasymov A.H., Koslov V.I. Morphological basics of low intensity laser therapy. (Tashkent: Ibn Sina publishing house, 1991). [in Russian].

2. Builin V.A. Low intensity laser therapywith using matrix pulsed lasers. (Moscow: Publishing house engineering, 1996). [in Russian].

3. Grimlatov V.M. Present laser equipment and problems of low intensity laser therapy. Medical and biology applications, Kyiv. 1996. 123. [in Russian].

4. Inushin V.M., Chekurov P.R. Laser biostimulation and bioplasm. (Alma-Ata: Kazakhstan, 1975). [in Russian].

5. Keysi H., Panish M. Lasers on heterostructure. (Moscow: Nauka, 1981). [in Russian].

6. Moskwin S.V, Radaev A.A., Ruchkin M.M. New opportunities of portable laser therapeutic apparatus «Motylok». In: «Medical and biology application of lasers» Pr. VII Int. scientific–practical conf. (Yalta, Ukraine, 1996). P. 111. [in Russian].

7. Moskwin S.V. Laser therapy as modern stage of development heliotherapy (historical aspect). Laser medicine. 1997. 1(1): 45. [in Russian].

8. Prohohchukov A.A., Gigina N.A. Lasers in stomatology. Lasers in clinical medicine. Guide to doctors. (Moscow: Medicina, 1996). [in Russian].

9. McKibbin L., Downie R. Treatment of Post Herpetic Neuralgia using a 904 nm (infrared) Low Incident Energy Laser: a Clinical Study. Laser Therapy. 1991. 3(1): 35. https://doi.org/10.5978/islsm.91-OR-05

10. Titov M.N., Moskvin S.V., Priezzhev A.V. Optimization of the parameters of biostimulator «Mustang» in respect to the light scattering properties of the tissues. Paper 2086−22 presented at SPIE`s. Symposium «Biomedical Optics Europe`93». (Budapest, Hungary, 1993).

11. Yakupov R.A. Laser reflexotherapy. (Moscow: Infra-Med, 1998). [in Russian].

12. Denisov I.M. Therapeutic use of low intensity lasesr in medicine. (Moscow: MLC «DAKSIMA», 2001). [in Russian].

13. Kondurin A.V. Ph.D. (Chem.) Thesis. (Moscow, 2010). [in Russian].

14. Bohren C.F., Huffman D.R. (1983). Abssorption and Scattering of Light by Small Particles. (New York: Wiley-Interscience, 1983).

15. Prashant K. J. Au., Ivan H. El. Nanoparticles target cancer. Nanotoday. 2007. 2(1): 18. https://doi.org/10.1016/S1748-0132(07)70016-6

16. Hongxing Xu. Doctoral (Philosoph.) Thesis. (Geteborg University, 2002).

17. Lerman L.B. Onset of additional plasmon resonances in lamellar small particles. Nanosystems, Nanonaterials, Nanotechnologies. 2009. 7(1): 37. [in Ukrainian].

18. Govorov A.O., Wei Zhang. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 2006. 1: 84. https://doi.org/10.1007/s11671-006-9015-7

19. Chatterjee K., Banerjee S., Chakravorty D. Plasmon resonance shifts in oxide-coated silver nanoparticles. Phys. Rev. B. 2002. 66: 085421−1. https://doi.org/10.1103/PhysRevB.66.085421

20. Zhu J. Theoretical study of the optical absorption properties of Au-Ag bimetalic nanospheres. Physica E. 2005. 27: 296. https://doi.org/10.1016/j.physe.2004.12.006

21. Huazhong S., Lide S., Weiping C. Composition modulation of optical absorption in AgxAu1–x alloy nanocrystals in suti within pores of nanopores silica. J. Appl. Phys. 2000. 87(3): 1572. https://doi.org/10.1063/1.372053

22. Grechko L.G., Lerman L.B., Koretskyi S.L. Absorption of electromagnetic irradiation by bimetall particles and matrix disperse systems with such inclusion. Bulletin of Kyiv University. Series: Physics & Mathematics. 2008. 4: 260. [in Ukrainian].

23. Lerman L.B., Lyuschenko M.A., SukhoruchkoYa.S. Interaction electromagnetic irradiation with bimetallic spherical particles stationed near solid surface. Coll. Chemistry, physics and technology of surface. 2009. 15: 51. [in Russian].

24. Grechko L.G., Grischuk E.Yu., Lerman L.B., Shpak A.P. Surface plasmons in assemblies of small particles (Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. Springer, 2009).

25. Lerman L.B., Lyuschenko M.A., SukhoruchkoYa.S. Electromagnetic reflection from multilayer metallic nano-coatings. Poverkhnya (Surface). 2010. 2(17): 7. [in Ukrainian].

26. Jonson P.B., Christy R.W. Optical Constants of the Noble Metals. Phys. Rev. B. 1972. 6(12). 4370. https://doi.org/10.1103/PhysRevB.6.4370

27. Palik E.D. Handbook of Optical Constants of Solids. (New York: Academic Press, 1985).

28. Landau L.D., Lifshic E.M. Electrodynamics of continuous mediums. V. 8. (Moscow: Nauka, 1982). [in Russian].

29. Moroz A. A recursive transfer-matrix solution for a dipole radiating and outside a stratified sphere. Ann. Physics. 2005. 315: 352. https://doi.org/10.1016/j.aop.2004.07.002

30. Wu Z.S., Wang Y.P. Electromagnetic scattering for multi-layered sphere: recursive algorithm. Radio Sci. 1991. 26: 1393. https://doi.org/10.1029/91RS01192

31. Gurwich I., Kleiman M., Shiloah N., Cohen A. Scattering of electromagnetic radiation by multilayered spheroidal particles: recursive procedure. Appl. Opt. 2000. 39(3). 470. https://doi.org/10.1364/AO.39.000470

32. Grechko L. G., Lerman L.B., Shkoda N.G. Scattering of electromagnetic waves on multilayered sphere. Bulletin of Kyiv University. Series: Physics & Mathematics. 2004. 3: 376. [in Ukrainian].

33. Grechko L.G., Lerman L.B., Shkoda N.G. Multi-layered ellipsoid in electric field. Bulletin of Kyiv University. Series: Physics & Mathematics. 2004. 1: 386. [in Ukrainian].

34. Grechko L.G., Lerman L.B., Vodopyanov D.L., Shostak S.V. Polarizability of structurally-heterogeneous spherical particles. Bulletin of Kyiv University. Series: Physics & Mathematics. 2007. 1: 416. [in Ukrainian].

35. Roth J., Digman M.J. Scattering and extinction sections fof a spherical particles coated with an oriented molecular layer. J. Optical Society of America. 1973. 63. 3: 308.

36. Lopatin V.N, Sidko Th.Ya. Introduction to optics of dredges of cells. (Novosibirsk: Nauka, 1988). [in Russian].

37. Aden A.L., Kerker M. Scattering of Electromagnetic Waves from Two Concentric Spheres. J. Appl. Phys. 1951. 22(10): 1242. https://doi.org/10.1063/1.1699834

38. Westcott S.L., Jackson J.B., Radloff C., Halas N.J. Relative contribution to the plasmon line shape of metal nanoshells. Phys. Rev. B. 2002. 66: 155431. https://doi.org/10.1103/PhysRevB.66.155431

39. Porodko L.V., Lerman L.B. Electrodynamic energy in spherical sphere stratified nanoparticles. Technology audit and production reserves. 2013. 6/1(14): 41. [in Ukrainian].

40. Carslaw H., Jaeger J. Conduction of Heat in Solids. (Oxford: At the clarendol press, 1959).

41. Lykov A.V. Theory of thermal conduction of solids. (Moscow: Gosudastvennoe izdatel'stvo techniko-teoreticheskoi literatury, 1952). [in Russian].




DOI: https://doi.org/10.15407/hftp07.02.214

Copyright (©) 2016 L. B. Lerman, L. V. Porodko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.