Хімія, фізика та технологія поверхні, 2016, 7 (3), 285-294.

Екситонні стани в напівпровідникових наносистемах



DOI: https://doi.org/10.15407/hftp07.03.285

S. I. Pokutnyi, P. P. Gorbyk, S. M. Mahno, S. L. Prokopenko

Анотація


Варіаційним методом, у рамках модифікованого методу ефективної маси, одержано енергетичний спектр основного стану екситона, що рухається в об’ємі квантової точки, вміщеній в повітря, як функція радіуса квантової точки. Встановлено, що в забороненій зоні квантової точки селеніду цинку виникає зона екситонних станів, розташована біля дна зони провідності.Показано, що зменшення ширини забороненої зони в такій наносиcтемі зумовлено переходом електрона з квантоворозмірного рівня, розташованого у валентній зоні квантової точки, на рівні зони екситонних станів.

Ключові слова


квантові точки; екситон; селенід цинку

Повний текст:

PDF (Русский)

Посилання


1. Ekimov A.I., Onuschenko A.A. The quantum size effect in three-dimensional microscopic semiconductors. JETP Lett. 1981. 34(6): 363.

2. Ekimov A.I., Onuschenko A.A. Size quantization of the electron energy spectrum in a microscopic semiconductor. JETP Lett. 1984. 40(8): 337.

3. Ekimov A.I., Efros Al.L., Onuschenko A.A. Quantum size effect in semiconductor microcrystals. Sol. Stat. Commun. 1985. 56(11): 921.  https://doi.org/10.1016/S0038-1098(85)80025-9 

4. Ekimov A.I., Onuschenko A.A., Efros Al.L. The quantization of the energy spectrum of the holes in the adiabatic potential of the electron. JETP Lett. 1986. 43(6): 292. 

5. Chepic D.I., Efros Al.L., Ekimov A.I., Ivanov M.G., Kharchenko V.A., Kudriavtsev I.A., Yazeva T.V. Auger ionization of semiconductor quantum drops in a glass matrix. J. Luminis. 1990. 47(3): 113.   https://doi.org/10.1016/0022-2313(90)90007-X  

6. Ekimov A. I., Kudryavtsev I. A., Efros Al. L., Yazeva T. V., Hache F., Schanne-Klein M. C., Rodina A. V., Ricard D., Flytzanis C. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B. 1993. 10(1): 100.   https://doi.org/10.1364/JOSAB.10.000100

7. Grabovskis V.J., Dzenis Y.Y., Ekimov A.I., Kudryavtsev I.A., Tolstoy M.N., Rogulis U.T. Photoionization semiconductor microcrystals in the glass. Solid State Phys. 1989. 31(1): 272.  

8. Alferov Z. The history and future of semiconductor heterostructures. Semiconductors. 1998. 32(1): 3.  https://doi.org/10.1134/1.1187350 

9. Alferov Z. The double heterostructure: concept and applications in physics, electronics and technology. Progr. Phys. Sciences. 2002. 172(9): 1068.  https://doi.org/10.1142/s0217979202010233 

10. Bondar N.V., Brodin M.S. Evolution of exciton states in two-phase systems with quantum dots II-VI semiconductors near the percolation threshold. Semiconductors. 2010. 44(7): 915.   https://doi.org/10.1134/S1063782610070109  

11. Pokutny S.I. Exciton states in semiconductor nanostructures spherical. Semiconductors. 2005. 39(9): 1101.  https://doi.org/10.1134/1.2042600 

12. Pokutnyi S.I., Jacak L., Misiewicz J., Salejda W., Zegrya G.G. Stark effect in semiconductor quantum dots. J. Appl. Phys. 2004. 96(2): 1115.  https://doi.org/10.1063/1.1759791

13. Pokutnyi S.I. The absorption and scattering of light at the single-particle states of the charge carriers in semiconductor quantum dots. Semiconductors. 2006. 40(2): 223.  

14. Pokutnyi S.I. Optical nanolaser on the heavy hole transition in semiconductor nanocrystals: Theory. Phys. Lett. A. 2005. 342(4): 347.  https://doi.org/10.1016/j.physleta.2005.04.070

15. Pokutnyi S.I. Exciton states in semiconductor quantum dots under the modified method of effective mass. Semiconductors. 2007. 41(11): 1341.   https://doi.org/10.1134/S1063782607110097

16. Pokutnyi S.I. The binding energy of an exciton in a semiconductor quantum dots. Semiconductors. 2010. 44(4): 507.   https://doi.org/10.1134/s1063782610040147  

17. Soloviev V.N., Eeichofer A., Frenske D., Banin U. Molecular Limit of a Bulk Semiconductor: Size Dependent Optical Spectroscopy Study of CdSe Cluster Molecules. Phys. Stat. Sol. B. 2001. 224(1): 285.   https://doi.org/10.1002/1521-3951(200103)224:1<285::AID-PSSB285>3.0.CO;2-G  

18. Collins R.T., Fauchet P.M., Tischler M.A. Porous silicon: from luminescence to LEDs. Phys. Today. 2008. 50(1): 24.  https://doi.org/10.1063/1.881650 

19. Yeh C.Y., Zhang S.B., Zunger A. Confinement, surface, and chemisorption effects on the optical properties of Si quantum wires. Phys. Rev. B. 1994. 50(19): 14405.  https://doi.org/10.1103/PhysRevB.50.14405 

20. Delerue C., Allan G., Lannoo M. Theoretical aspects of the luminescence of porous silicon. Phys. Rev. B. 1993. 48(15): 11024.  https://doi.org/10.1103/PhysRevB.48.11024 

21. Read A.J., Needs R.J., Nash K.J., Canham L.T., Calcott P.D.J., Qteish A. First-principles calculations of the electronic properties of silicon quantum wires. Phys. Rev. Lett. 1992. 69(8): 1232.   https://doi.org/10.1103/PhysRevLett.69.1232  

22. Buda F., Kohanoff J., Parrinello M. Optical properties of porous silicon: A first-principles study. Phys. Rev. Lett. 1992. 69(8): 1272.  https://doi.org/10.1103/PhysRevLett.69.1272 

23. Pokutnyi S.I. Size quantization of exciton in semiconductor quantum dots. Phys. Low. – Dim. Struct. 2002. 78: 39.

24. Efremov N.A., Pokutny S.I. The energy spectrum of the exciton in a small spherical semiconductor particles. Solid State Phys. 1990. 32(6): 1637.

25. Pokutny S.I. Size quantization of electron-hole pairs in the semiconductor structures of quasi-zero. Semiconductors. 1991. 25(4): 628.

26. Pokutnyi S.I. Size quantization of excitons in quasi-zero-dimensional semiconductor structures. Phys. Lett. A. 1992. 168(5): 433.   https://doi.org/10.1016/0375-9601(92)90531-P




DOI: https://doi.org/10.15407/hftp07.03.285

Copyright (©) 2016 S. I. Pokutnyi, P. P. Gorbyk, S. M. Mahno, S. L. Prokopenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.