Хімія, фізика та технологія поверхні, 2017, 8 (3), 271-288.

Вплив механохімічного модифікування на властивості порошків оксиду і оксигідроксиду олова(iv)



DOI: https://doi.org/10.15407/hftp08.03.271

S. V. Khalameida, M. M. Samsonenko, J. Skubiszewska-Zięba, O. I. Zakutevskyy, L. S. Kuznetsova

Анотація


Шляхом механохімічної обробки модифіковано зразки порошків низькодисперсного оксиду олова(IV) та високодисперсного оксигідроксиду олова(IV). Фізико-хімічні властивості всіх зразків досліджені за допомогою ДТА, РФА, ІЧ-спектроскопії з Фур’є перетворенням, адсорбції-десорбції азоту, UV-Vis-спектроскопії. Оцінку фотокаталітичної активності проводили шляхом деградації родаміну Б та сафраніну Т у водному середовищі. Встановлено, що в результаті механохімічної обробки всіх зразків формується мезо-макропорувата структура. Спостерігається залежність ефективності фотокаталітичної деградації родаміну Б від дисперсності, наявності дефектів на поверхні каталізатора та його електронної структури.

Ключові слова


оксид і оксигідроксид олова(IV); механохімічна обробка; порувата структура; родамін Б; фотокаталітична активність

Повний текст:

PDF

Посилання


1. Misak N.Z., Shabana El-S.I., Mikhail E.M. Ghoneimy H.F. Kinetics of isotopic exchange and mechanism of sorption of CO(II) on hydrous stannic oxide. Reactive Polymers. 1992. 16(3): 261. https://doi.org/10.1016/0923-1137(92)90261-Y

2. Nilchi A., Dehaghan T. Sh. Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination. 2013. 321: 67. https://doi.org/10.1016/j.desal.2012.06.022

3. Sergent N., Gélin P., Périer-Camby L., Praliaud H., Thomas G. Preparation and characterisation of high surface area stannic oxides: structural, textural and semiconducting properties. Sens. Actuators. B. 2002. 84(2–3):176. https://doi.org/10.1016/S0925-4005(02)00022-9

4. Adnan R., Razana N. A., Rahman I.A. Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Sol-Gel Method as a Catalyst for the Hydrogenation of Styrene. J. Chin. Chem. Soc. 2010. 57(2): 222. https://doi.org/10.1002/jccs.201000034

5. Zhao Q., Zhang Z., Dong T., Xie Y. Facile Synthesis and Catalytic Property of Porous Tin Dioxide Nanostructures. J. Phys. Chem. B. 2006. 110(31): 15152. https://doi.org/10.1021/jp0620522

6. Solrıs-Casados D., Vigueras-Santiago E., Hernrandez-Lopez, Camacho-Lopez M. A. Characterization and Photocatalytic Performance of Tin Oxide. Ind. Eng. Chem. Res. 2009. 48(3): 1249.

7. Yuan H., Xu J. Preparation, Characterization and Photocatalytic Activity of Nanometer SnO2. International Journal of Chemical Engineering and Applications. 2010. 1(3): 241. https://doi.org/10.7763/IJCEA.2010.V1.41

8. Kim J., Lee J.S., Kang M. Synthesis of Nanoporous Structured SnO2 and its Photocatalytic Ability for Bisphenol A Destruction. Bull. Korean Chem. Soc. 2011. 32(5): 1715. https://doi.org/10.5012/bkcs.2011.32.5.1715

9. He Z., Zhou J. Synthesis, Characterization, and Activity of Tin Oxide Nanoparticles: Influence of Solvothermal Time on Photocatalytic Degradation of Rhodamine B. Modern Research in Catalysis. 2013. 2(3A): 13. https://doi.org/10.4236/mrc.2013.23A003

10. Jia Z., Sun H.-J., Wang Y, Zhen T., Chang Q. Facile synthesis of tin oxide nanocrystals and their photocatalytic activity. Trans. Nonferrous Met. Soc. China. 2014. 24(6): 1813. https://doi.org/10.1016/S1003-6326(14)63258-1

11. Miller T. A., Bakrania S. D., Perez C., Wooldridge M. S. Nanostructured Tin Dioxide Materials for Gas Sensor Applications. Functional Nanomaterials. 2006. 30: 453.

12. Teterycz H., Halek P., Wiśniewski K., Halek G., Koźlecki T., Polowczyk I. Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors. Sensors. 2011. 11(4): 4425. https://doi.org/10.3390/s110404425

13. Gavrilov V., Zenkovets G. Influence of conditions of deposition of tin dioxide to form a porous structure of the xerogel. Kinetics and Catalysis. 1992. 33(1): 183. [in Russian].

14. Gavrilov V. Adsorption research of microporous structure of tin dioxide. Kinetics and Catalysis. 2000. 41(2): 304. [in Russian]. https://doi.org/10.1007/BF02771430

15. Zhang G., Liu M. Preparation of nanostructured tin oxide using a sol-gel process based on tin etrachloride and ethylene glycol. J. Mater. Sci. 1999. 34(13): 3213. https://doi.org/10.1023/A:1004685907751

16. Ivanenko I., Dontsova T., Astrelin I., Romanenko Y. Synthesis of nanodispersed powders of tin (IV) oxide with developed surface. Nanosystems, nanomaterials and nanotechnologies. 1999. 12(2): 347. [in Ukrainian].

17. Sharygin L., Vovk S., Gonchar V., Barybin V. Perehozheva T. Investigation of the hydrated tin dioxide by vibrational spectroscopy. Journal of Inorganic Chemistry. 1983. 28(3): 576. [in Russian].

18. Ho S.Y., Wong A.S.W., Ho G.W. Controllable Porosity of Monodispersed Tin Oxide Nanospheres via an Additive-Free Chemical Route. Cryst. Growth Des. 2009. 9(2): 732. https://doi.org/10.1021/cg8001256

19. Chen D., Gao L. Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process. J. Colloid Interface Sci. 2004. 279(1): 137. https://doi.org/10.1016/j.jcis.2004.06.052

20. Ivanov V., Sidorak I., Shubin A., Denisova L. Synthesis of SnO2 powders by decomposition of the thermally unstable compounds. Journal of Siberian Federal University. Engineering & Technologies. 2010. 3(2): 189. [in Russian].

21. Leboda R., Charmas B., Sidorchuk V.V. Physicochemical and technological aspects of hydrothermal modification of complex sorbents and catalysts. I. Modification of porous and crystalline structures. Adsorpt. Sci. Technol. 1997. 15(3): 189. https://doi.org/10.1177/026361749701500305

22. Chertov V., Okopnaya N. Research of hydrothermal modification of germanium dioxide, tin dioxide and lead dioxide. Colloid Journal. 1977. 39(1): 121. [in Russian].

23. Sharygin L., Gonchar V., Shtin A., Pushkarev V. Hydrothermal modification of porous structure of the hydrated tin dioxide. Kinetics and Catalysis. 1975. 16(4): 1056. [in Russian].

24. Gonchar V.F., Barybin V.I., Sharygin L.M., Tretyakov S.Y. Hydrothermal modification of hydrated tin dioxide produced by sol-gel method. Inorganic materials. 1982. 18(1): 79. [in Russian].

25. Buyanov R., Molchanov V., Boldyrev V. Mechanochemical activation as a tool of increasing catalytic activity. Catalysis Today. 2009. 144(3-4): 212. https://doi.org/10.1016/j.cattod.2009.02.042

26. Šepelák V., Bégin-Colin S., Caër G. L. Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 2012. 41: 11927. https://doi.org/10.1039/c2dt30349c

27. Boldyrev V.V. Hydrothermal reactions under mechanochemical action. Powder. Technol. 2002. 122(2–3): 247. https://doi.org/10.1016/S0032-5910(01)00421-1

28. Yang H., Hu Y., Tang A., Jin S., Qiu G. Synthesis of tin oxide nanoparticles by mechanochemical reaction. J. Alloys Compd. 2004. 363(1–2): 271. https://doi.org/10.1016/S0925-8388(03)00473-0

29. Kersen U., Sundberg M.R. The Reactive surface sites and the H2S sensing potential for the SnO2 produced by a mechanochemical milling. J. Electrochem. Soc. 2003. 150(6): H129. https://doi.org/10.1149/1.1570414

30. Cukrov L., McCormick P., Galatsis K., Wlodarski W. Gas sensing properties of nanosized tin oxide synthesized by mechanochemical processing. Sens. Actuators, B. 2001. 77: 491. https://doi.org/10.1016/S0925-4005(01)00751-1

31. Kersen Ü. The gas-sensing potential of nanocrystalline SnO2 produced by a mechanochemical milling via centrifugal action. Appl. Phys. A. 2002. 75(5): 559. https://doi.org/10.1007/s003390101020

32. Lamelas F.J. Formation of orthorhombic tin dioxide from mechanically milled monoxide powders. J. Appl. Phys. 2004. 96: 6195. https://doi.org/10.1063/1.1808920

33. Sokovykh E.V., Oleksenko L.P., Maksymovych N.P., Matushko I.P. Influence of temperature conditions of forming nanosized SnO2-based materials on hydrogen sensor properties. J. Therm. Anal. Calorim. 2015. 121(3): 1159. https://doi.org/10.1007/s10973-015-4560-x

34. Orel B., Lavrencic-Stangar U., Crnjak-Orel Z., Bukovec P., Kosec M. Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO2 and SnO2/Sb powders and dip-coated films prepared via inorganic sol-gel route. J. Non-Cryst. Solids. 1994. 167(3): 272. https://doi.org/10.1016/0022-3093(94)90250-X

35. Zhu J., Lu Z., Aruna S. T., Aurbach D., Gedanken A., Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li-Insertion Electrodes . Chem. Mater. 2000. 12(9): 255. https://doi.org/10.1021/cm990683l

36. Skwarek E., Khalameida S., Janusz W. Sydorchuk V., Konovalova N., Zazhigalov V., Skubiszewska-Zie˛ba J., Leboda R. Influence of mechanochemical activation on structure and some properties of mixed vanadium–molybdenum oxides. J. Therm. Anal. Calorim. 2011. 106(3): 881. https://doi.org/10.1007/s10973-011-1744-x

37. Srivastava D.N., Chappel S., Palchik O. Zaban A., Gedanken A. Sonochemical Synthesis of Mesoporous Tin Oxide. Langmuir. 2002. 18(10): 4160. https://doi.org/10.1021/la015761+

38. Kryukov A., Kuchmiy St., Stroyuk A., Pokhodenko V. Nanophotocatalysis. (Kiev: Akademperiodyka, 2013). [in Russian].

39. Wu T., Liu G., Zhao J., Hidaka H., Photoassisted degradation of dye pollutants. V. Self-Photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B. 1998. 102(30): 5845. https://doi.org/10.1021/jp980922c

40. Zhu Z.F., Zhou J.Q., Wang X.F., He Z.L., Liu H. Effect of pH on photocatalytic activity of SnO2 microspheres via microwave solvothermal route. Mater. Res. Innovations. 2014. 18(1): 8. https://doi.org/10.1179/1433075X12Y.0000000043

41. Sangami. G., Dharmaraj N. UV–visible spectroscopic estimation of hotodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2012. 97: 847. https://doi.org/10.1016/j.saa.2012.07.068

42. Wang G., Lu W., Li J. Choi J., Jeong Y., Choi S.-Y., Park J.-B., Ryu M. K., Lee K. V-Shaped Tin Oxide Nanostructures Featuring a Broad Photocurrent Signal: An Effective Visible-Light-Driven Photocatalyst. Small. 2006. 2(12): 1436. https://doi.org/10.1002/smll.200600216

43. Merka O., Yarovyi V., Bahnemann D.W., Wark M. pH-Control of the photocatalytic degradation mechanism of Rhodamine B over Pb3Nb4O13. J. Phys. Chem. C. 2011. 115(16): 8014. https://doi.org/10.1021/jp108637r

44. Sydorchuk V., Khalameida S., Skubiszewska-Zięba J., Davydenko L., Zazhyhalov V. Modification and catalytic properties of niobium pentoxide. Him. Fiz. Tehnol. Poverhni. 2017. 8(2): 175. [in Ukrainian].  https://doi.org/10.15407/hftp08.02.175

45. Gupta V.K., Jain R., Mittal A., Mathur M., Sikarwar S. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Colloid Interface Sci. 2007. 309(2): 464. https://doi.org/10.1016/j.jcis.2006.12.010

46. Sydorchuk V.V., Khalameida S.V., Zazhigalov V.A, Hanina O.A. Photocatalytic degradation in the presence of certain dyes mechanochemical modified vanadium oxide and molybdenum. Him. Fiz. Tehnol. Poverhni. 2013. 4(3): 266. [in Ukrainian].

47. Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009. 151(1–3): 10. https://doi.org/10.1016/j.cej.2009.02.026

48. Wu S., Cao H., Yin S. Liu X., Zhang X. Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2. J. Phys. Chem. C. 2009. 113(41): 17893. https://doi.org/10.1021/jp9068762




DOI: https://doi.org/10.15407/hftp08.03.271

Copyright (©) 2017 S. V. Khalameida, M. M. Samsonenko, J. Skubiszewska-Zięba, O. I. Zakutevskyy, L. S. Kuznetsova