Хімія, фізика та технологія поверхні, 2023, 14 (3), 275-299.

2D–наноструктуровані вуглецеві матеріали: ефекти окиснення та розупорядкування пакетів



DOI: https://doi.org/10.15407/hftp14.03.275

V. M. Gun’ko, Yu. I. Sementsov, L. S. Andriyko, Yu. M. Nychyporuk, O. I. Oranska, O. K. Matkovsky, Yu. V. Grebel'na, B. Charmas, J. Skubiszewska–Zięba, M. T. Kartel

Анотація


Різноманітні 2D–вуглецеві матеріали демонструють значний вплив поверхневого окиснення, нагрівання, суспендування–сушіння, кріожелювання, набухання, адсорбції полярних і неполярних сполук на морфологічні, структурні та текстурні характеристики. Нагрівання при 120–150 °C може призвести до практичного колапсу пор між вуглецевими листами в стопках та сусідніми стопками, а питома поверхня (ПП) зменшується в 30–100 разів для оксидів графену (OГ). Структура ОГ досить аморфна, оскільки лише невеликі нанорозмірні фрагменти демонструють певне упорядкування. Крім того, інтенсивність лінії D (невпорядковані, дефектні структури з sp3 C атомами) для OГ подібна до інтенсивності лінії G (впорядковані структури з sp2 C атомами) у раманівських спектрах. Структура OГ досить аморфна, хоча і існують невеликі впорядковані кластери, тому лінії XRD (001) і (002) є доволі широкими. Структура оксиду графіту (GtO), яка ближча до структури графіту, ніж структура GO, характеризується головним чином лінією G (D дуже слабка) у спектрах комбінаційного розсіювання та основним піком XRD при 26.4° (характерним для графіту), що є широким подібно до піку XRD при 10° для OГ. Незважаючи на те, що пакети OГ мають тенденцію колапсувати під час нагрівання, вони можуть легко набухати не лише у воді, але й у рідкому азоті. Таким чином, використання ОГ у водних середовищах може забезпечити за рахунок набухання великі значення ПП, яка відповідає площині контактів з розчинником і молекулами чи іонами розчинених речовин. Це може забезпечити високу ефективність використання ОГ для очищення стічних вод, розділення розчинених речовин тощо. OГ, виготовлений із природного лускатого графіту як прекурсора (пластівці < 0.2 мм) за допомогою модифікованого методу іонної гідратації та сублімаційного сушіння, має низьку насипну густину і типовий світло–коричневий колір. Взаємодія ОГ з водою призводить до сильного набухання. Взаємодія між вуглецевими листами в сухому ОГ дуже сильна і неполярні молекули, такі як бензол, н–декан, погано проникають між листами, тобто інтеркаляційна адсорбція невелика, але молекули води можуть ефективно проникати (це скоріше інтеркаляційна адсорбція) між ними. Таким чином, запропонований метод синтезу ОГ з використанням природного графіту є ефективним і придатним для отримання ОГ для різних практичних застосувань.


Ключові слова


оксид графену; оксид графіту; розширений графіт; морфологічні характеристики; текстура, структура; ефекти нагрівання–охолодження–сушіння; ефекти суспендування

Повний текст:

PDF (English)

Посилання


Yang R.T. Adsorbents: Fundamentals and Applications. (New York: Wiley, 2003). https://doi.org/10.1002/047144409X

Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3

Ahuja S. (Ed.) Separation Science and Technology. V. 15. (Amsterdam: Elsevier, 2022).

Hussain C.M. (Ed.) Handbook of Polymer Nanocomposites for Industrial Applications. (Amsterdam: Elsevier, 2021).

Ahmad A., Kumar R., Jawaid M. (Eds.) Emerging Techniques for Treatment of Toxic Metals from Wastewater. (Amsterdam: Elsevier, 2022).

Ngu L.H. Carbon Capture Technologies. (Amsterdam: Elsevier, 2022). https://doi.org/10.1016/B978-0-323-90386-8.00028-0

Moreno-Piraján J.C., Giraldo-Gutierrez L., Gómez-Granados F. Porous Materials Theory and Its Application for Environmental Remediation. (Cham: Springer Nature, 2021). https://doi.org/10.1007/978-3-030-65991-2

Zhang J., Terrones M., Rae C., Mukherjee R., Monthioux M., Koratkar N., Kim Y.S., Hurt R., Frackowiak E., Enoki T., Chen Y., Chen Y., Bianco A. Carbon science in 2016: Status, challenges and perspectives. Carbon. 2016. 98: 708. https://doi.org/10.1016/j.carbon.2015.11.060

Zhuang X., Mai Y., Wu D., Zhang F., Feng X. Two-dimensional soft nanomaterials: A fascinating world of materials. Adv. Mater. 2015. 27(3): 403. https://doi.org/10.1002/adma.201401857

Zhu B.Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010. 22(35): 3906. https://doi.org/10.1002/adma.201001068

Soldano C., Mahmood A., Dujardin E. Production, properties and potential of graphene. Carbon. 2010. 48(8): 2127. https://doi.org/10.1016/j.carbon.2010.01.058

Zhu Y., James D.K., Tour J.M. New routes to graphene, graphene oxide and their related applications. Adv. Mater. 2012. 24(36): 4924. https://doi.org/10.1002/adma.201202321

Subrahmanyam K.S., Vivekchand S.R.C., Govindaraj A., Rao C.N.R. A study of graphenes prepared by different methods: characterization, properties and solubilisation. J. Mater. Chem. 2008. 18(13): 1517. https://doi.org/10.1039/b716536f

Hu Y.J., Jin J.A., Zhang H., Wu P., Cai C.X. Graphene: synthesis, functionalization and applications in chemistry. Acta Phys.-Chim. Sinica. 2010. 26: 2073.

Tang Y., Guo H., Xiao L., Yu S., Gao N., Wang Y. Synthesis of reduced graphene oxide/ magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf. A. 2013. 424: 74. https://doi.org/10.1016/j.colsurfa.2013.02.030

Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958. 80(6): 1339. https://doi.org/10.1021/ja01539a017

Gun'ko V.M., Zaulychnyy Ya.V., Ilkiv B.I., Zarko V.I., Nychiporuk Yu.M., Ptushinskii Yu.G., Pakhlov E.M., Leboda R., Skubiszewska-Zięba J. Textural and electronic characteristics of mechanochemically activated composites with nanosilica and activated carbon. Appl. Surf. Sci. 2011. 258(3): 1115. https://doi.org/10.1016/j.apsusc.2011.09.047

Waheed A., Majeed A., Iqbal N., Ullah W., Shuaib A., Ilyas U., Bibi F., Rafique H.M. Specific capacitance and cyclic stability of graphene based metal / metal oxide nanocomposites: A review. J. Mater. Sci. Technol. 2015. 31(7): 699. https://doi.org/10.1016/j.jmst.2014.12.012

Deng Y., Fang C., Chen G. The developments of SnO2 / graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources. 2016. 304: 81. https://doi.org/10.1016/j.jpowsour.2015.11.017

Warner J.H., Schäffel F., Rummeli M., Bachmatiuk A. Graphene. Fundamentals and emergent applications. (Waltham: Elsevier, 2013).

Fei Q., Wei F. (Eds.) Advanced Hierarchical Nanostructured Materials. First Edition. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2014).

Luo B., Liu S., Zhi L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small. 2012. 8(5): 630. https://doi.org/10.1002/smll.201101396

Eigler S., Hirsch A. Chemistry with graphene and graphene oxide - Challenges for synthetic chemists. Ang. Chem. Int. Ed. 2014. 53(30): 7720. https://doi.org/10.1002/anie.201402780

Kim T.H., Merritt C.R., Ducati C., Bond A.D., Bampos N., Brown C.L. Bulk synthesis of graphene-like materials possessing turbostratic graphite and graphene nanodomains via combustion of magnesium in carbon dioxide. Carbon. 2019. 149: 582. https://doi.org/10.1016/j.carbon.2019.04.035

Chua C.K., Ambrosi A., Sofer Z., Macková A., Havránek V., Tomandl I., Pumera M. Chemical preparation of graphene materials results in extensive unintentional doping with heteroatoms and metals. Chem. Eur. J. 2014. 20(48): 15760. https://doi.org/10.1002/chem.201404205

Chang H., Wu H. Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv. Funct. Mater. 2013. 23(16): 1984. https://doi.org/10.1002/adfm.201202460

Bai H., Li C., Shi G. Functional composite materials based on chemically converted graphene. Adv. Mater. 2011. 23(9): 1089. https://doi.org/10.1002/adma.201003753

Wang S., Minami D., Kaneko K. Comparative pore structure analysis of highly porous graphene monoliths treated at different temperatures with adsorption of N2 at 77.4 K and of Ar at 87.3 K and 77.4 K. Microporous and Mesoporous Materials. 2015. 209: 72. https://doi.org/10.1016/j.micromeso.2015.01.014

Seehra M.S., Narang V., Geddam U.K., Stefaniak A.B. Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification. Carbon. 2017. 111: 380. https://doi.org/10.1016/j.carbon.2016.10.010

Gupta S., Chatterjee S., Ray A.K., Chakraborty A.K. Graphene - metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators B. 2015. 221: 1170. https://doi.org/10.1016/j.snb.2015.07.070

Yang T., Lin H., Zheng X., Loh K.P., Jia B. Tailoring pores in graphene-based materials: from generation to applications. J. Mater. Chem. A. 2017. 5(32): 16537. https://doi.org/10.1039/C7TA04692H

Aghigh A., Alizadeh V., Wong H.Y., Islam S., Amin N., Zaman M. Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination. 2015. 365: 389. https://doi.org/10.1016/j.desal.2015.03.024

Smith S.C., Rodrigues D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon. 2015. 91(7): 122. https://doi.org/10.1016/j.carbon.2015.04.043

Guerrero-Fajardo C.A., Giraldo L., Moreno-Piraján J.C. Graphene oxide: study of pore size distribution and surface chemistry using immersion calorimetry. Nanomaterials. 2020. 10(8): 1492. https://doi.org/10.3390/nano10081492

Gun'ko V.M., Turov V.V., Whitby R.L.D., Prykhod'ko G.P., Turov A.V., Mikhalovsky S.V. Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1H NMR. Carbon. 2013. 57: 191. https://doi.org/10.1016/j.carbon.2013.01.063

Huang Y., Zeng M., Ren J., Wang J., Fan L., Xu Q. Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf. A. 2012. 401: 97. https://doi.org/10.1016/j.colsurfa.2012.03.031

Yao C., Zhao J., Ge H., Ren J., Yin T., Zhu Y., Ge L. Fabrication of dual sensitive titania (TiO2)/ graphene oxide (GO) one-dimensional photonic crystals (1DPCs). Colloids Surf. A. 2014. 452: 89. https://doi.org/10.1016/j.colsurfa.2014.03.078

Hunt A., Dikin D.A., Kurmaev E.Z., Boyko T.D., Bazylewski P., Chang G.S., Moewes A. Epoxide speciation and functional group distribution in graphene oxide paper-like materials. Adv. Funct. Mater. 2012. 22(18): 3950. https://doi.org/10.1002/adfm.201200529

Park M., Kim K.H., Kim M., Lee Y. NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide. Colloids Surf. A. 2016. 490: 104. https://doi.org/10.1016/j.colsurfa.2015.11.028

Gu D., Fein J.B. Adsorption of metals onto graphene oxide: Surface complexation modeling and linear free energy relationships. Colloids Surf. A. 2015. 481: 319. https://doi.org/10.1016/j.colsurfa.2015.05.026

Low C.T.J. Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon. 2012. 54: 1. https://doi.org/10.1016/j.carbon.2012.11.030

Toda K., Furue R., Hayami S. Recent progress in applications of graphene oxide for gas sensing: A review. Anal. Chim. Acta. 2015. 878: 43. https://doi.org/10.1016/j.aca.2015.02.002

Kim J., Jeong E., Lee Y. Preparation and characterization of graphite foams. J. Ind. Eng. Chem. 2015. 32: 21. https://doi.org/10.1016/j.jiec.2015.09.003

Zhou H., Ganesh P., Presser V., Wander M.C.F., Fenter P., Kent P.R.C., Jiang D., Chialvo A.A., McDonough J., Shuford K.L., Gogotsi Y. Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory. Phys. Rev. B. 2012. 85(3): 035406(1-11). https://doi.org/10.1103/PhysRevB.85.035406

Whitby R.L.D., Gun'ko V.M., Korobeinyk A., Busquets R., Cundy A.B., László K., Skubiszewska-Zięba J., Leboda R., Tombácz E., Toth I.Y., Kovacs K., Mikhalovsky S.V. Driving forces of conformational changes in single-layer graphene oxide. ACS Nano. 2012. 6(5): 3967. https://doi.org/10.1021/nn3002278

Yoon Y., Kyu W., Hwang T., Ho D., Seok W., Kang J. Comparative evaluation of magnetite - graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J. Hazard. Mater. 2016. 304: 196. https://doi.org/10.1016/j.jhazmat.2015.10.053

Kurnianditia L., Ong W., Sea W., Chai S. Heteroatom doped graphene in photocatalysis: A review. Appl. Surf. Sci. 2015. 358(Part A): 2. https://doi.org/10.1016/j.apsusc.2015.08.177

Ma J., Cai P., Qi W., Kong D., Wang H. The layer-by-layer assembly of polyelectrolyte functionalized graphene sheets: A potential tool for biosensing. Colloids Surf. A. 2013. 426: 6. https://doi.org/10.1016/j.colsurfa.2013.02.039

Manivel P., Kanagaraj S., Balamurugan A., Ponpandian N., Mangalaraj D. Rheological behavior and electrical properties of polypyrrole / thermally reduced graphene oxide nanocomposite. Colloids Surf. A. 2014. 441: 614. https://doi.org/10.1016/j.colsurfa.2013.10.031

Duster T.A., Szymanowski J.E.S., Na C., Showalter A.R., Bunker B.A., Fein J.B. Surface complexation modeling of proton and metal sorption onto graphene oxide. Colloids Surf. A. 2015. 466: 28. https://doi.org/10.1016/j.colsurfa.2014.10.049

Wu J., Chen C., Hao Y., Wang C. Enhanced electrochemical performance of nanosheet ZnO / reduced graphene oxide composites as anode for lithium-ion batteries. Colloids Surf. A. 2015. 468: 17. https://doi.org/10.1016/j.colsurfa.2014.12.009

Wei Z., Barlow D.E., Sheehan P.E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett. 2008. 8(10): 3141. https://doi.org/10.1021/nl801301a

Liu L., Wang L., Gao J., Zhao J., Gao X., Chen Z. Amorphous structural models for graphene oxides. Carbon. 2012. 50(4): 1690.  https://doi.org/10.1016/j.carbon.2011.12.014

Whitby R.L.D., Korobeinyk A., Gun'ko V.M., Busquets R., Cundy A.B., Laszlo K., Skubiszewska-Zięba J., Leboda R., Tombacz E., Toth I., Kovacs K., Mikhalovsky S.V. pH driven-physicochemical conformational changes of single-layer graphene oxide. Chem. Commun. 2011. 47(34): 9645. https://doi.org/10.1039/c1cc13725e

Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

Erickson K., Erni R., Lee Z., Alem N., Gannett W., Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010. 22(40): 4467. https://doi.org/10.1002/adma.201000732

Barroso-Bujans F., Cerveny S., Verdejo R., del Val J.J., Alberdi J.M., Alegría A., Colmenero J. Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation. Carbon. 2010. 48(4): 1079. https://doi.org/10.1016/j.carbon.2009.11.029

Barroso-Bujans F., Cerveny S., Alegría A., Colmenero J. Sorption and desorption behavior of water and organic solvents from graphite oxide. Carbon. 2010. 48(11): 3277. https://doi.org/10.1016/j.carbon.2010.05.023

Barroso-Bujans F., Fierro J.L.G., Alegría A., Colmenero J. Revisiting the effects of organic solvents on the thermal reduction of graphite oxide. Thermochim. Acta. 2011. 526(1-2): 65. https://doi.org/10.1016/j.tca.2011.08.023

Zhu K., Meng A., Wang W., Song G., Zhang M., Wei Q., Du Y., Zhang D., Li Q., Li Z. Influence of oxygen-containing groups on the photocatalytic properties of ZnO/graphene oxide composite. Mater. Lett. 2016. 169: 172. https://doi.org/10.1016/j.matlet.2016.01.067

Ma Y., Di H., Yu Z., Liang L., Lv L., Pan Y., Zhang Y., Yin D. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research. Appl. Surf. Sci. 2016. 360(Part B): 936. https://doi.org/10.1016/j.apsusc.2015.11.088

Liu J., Liu W., Wang Y., Xu M., Wang B. A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu(II) from aqueous solutions. Appl. Surf. Sci. 2016. 367: 327. https://doi.org/10.1016/j.apsusc.2016.01.176

Naghdi S., Jaleh B., Shahbazi N. Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: Investigation of surface structures. Appl. Surf. Sci. 2016. 368: 409. https://doi.org/10.1016/j.apsusc.2016.01.193

Jain R., Dhanjai, Sinha A. Graphene-zinc oxide nanorods nanocomposite based sensor for voltammetric quantification of tizanidine in solubilized system. Appl. Surf. Sci. 2016. 369: 151. https://doi.org/10.1016/j.apsusc.2016.02.077

Wang H., Gao H., Chen M., Xu X., Wang X., Pan C., Gao J. Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl. Surf. Sci. 2016. 360(Part B): 840. https://doi.org/10.1016/j.apsusc.2015.11.075

Zhang L., He Y., Feng S., Zhang L., Zhang L., Jiao Z., Zhan Y., Wang Y. Preparation and tribological properties of novel boehmite/graphene oxide nano-hybrid. Ceram. Int. 2016. 42(5): 6178. https://doi.org/10.1016/j.ceramint.2015.12.178

Kang X.J., Zhang J.M., Sun X.W., Zhang F.R., Zhang Y.X. One-pot synthesis of vanadium dioxide nanoflowers on graphene oxide. Ceram. Int. 2016. 42(6): 7883. https://doi.org/10.1016/j.ceramint.2016.01.170

Nguyen N.S., Das G., Yoon H.H. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 2016. 77: 372. https://doi.org/10.1016/j.bios.2015.09.046

Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Matkovsky A.K., Prykhod'ko G.P., Nychiporuk Yu.M., Pakhlov E.M., Krupska T.V., Balakin D.Yu., Charmas B., Andriyko L.S., Skubiszewska-Zięba J., Marynin A.I., Ukrainets A.I., Kartel M.T. Multi-layer graphene oxide alone and in a composite with nanosilica: preparation and interactions with polar and nonpolar adsorbates. Appl. Surf. Sci. 2016. 387: 736. https://doi.org/10.1016/j.apsusc.2016.06.196

Dovbeshko G.I., Kopan V. S., Revo S.L., Nishchenko M. M., Prikhod'ko G. P., Pyatkovskiy M. L., Sementsov Yu. I., Vestmayer M. Nanostructure of exfoliated graphite. Phys. Met. Adv. Technol. 2005. 27(3): 281.

Kartel M., Sementsov Yu., Dovbeshko G., Karachevtseva L., Makhno S., Aleksyeyeva T., Grebel'na Yu., Styopkin V., Bo W., Stubrov Yu. Lamellar structures from graphene nanoparticles produced by anode oxidation. Adv. Mater. Lett. 2017. 8(3): 212. https://doi.org/10.5185/amlett.2017.1428

Sementsov Yu., Makhno S., Kartel M., Bo W., Dovbeshko G., Styopkin V., Nedilko S. Graphene nanoparticles and graphene nanoparticles - polyamide 12/12 composites. Int. J. Innov. Sci. Eng. Technol. 2017. 4(8): 71.

Fiji. 2023. https://fiji.sc/ (version 1.54b), https://imagej.net/Local_Thickness.

Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Himia, Fizika ta Tehnologia Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317

Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117

Ravikovitch P.I., Neimark A.V. Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir. 2006. 22(26): 11171. https://doi.org/10.1021/la0616146

Gun'ko V.M., Zarko V.I., Chuikov B.A., Dudnik V.V., Ptushinskii Yu.G., Voronin E.F., Pakhlov E.M., Chuiko A.A. Temperature-programmed desorption of water from fumed silica, silica/titania, and silica/alumina. Int. J. Mass Spectrom. Ion Process. 1998. 172(3): 161. https://doi.org/10.1016/S0168-1176(97)00269-3

Pedretti A., Mazzolari A., Gervasoni S., Fumagalli L., Vistoli G. The VEGA suite of programs: an versatile platform for cheminformatics and drug design projects. Bioinformatics. 2021. 37(8): 1174. https://doi.org/10.1093/bioinformatics/btaa774

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021. 30(1): 70. https://doi.org/10.1002/pro.3943

Stewart J.J.P. MOPAC2022 (ver. 22.06). Stewart Computational Chemistry. web: HTTP://OpenMOPAC.net.

Whitby R.L.D., Korobeinyk A.V., Gun'ko V. M., Wright D.B., Dichello G., Smith L.C., Fukuda T., Maekawa T., Mikhalovsky S.V., Thorpe J.R. Single-layer graphenes functionalized with polyurea: architectural control and biomolecule reactivity. J. Phys. Chem. C. 2013. 117(22): 11829. https://doi.org/10.1021/jp4022213

Gun'ko V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Himia, Fizika ta Tehnologia Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163

Howe J.Y., Rawn C.J., Jones L.E., Ow H. Improved crystallographic data for graphite. Powder Diffr. 2003. 18(2): 150. https://doi.org/10.1154/1.1536926

Acik M., Lee G., Mattevi C., Pirkle A., Wallace R.M., Chhowalla M., Cho K., Chabal Y. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C. 2011. 115(40): 19761. https://doi.org/10.1021/jp2052618




DOI: https://doi.org/10.15407/hftp14.03.275

Copyright (©) 2023 V. M. Gun’ko, Yu. I. Sementsov, L. S. Andriyko, Yu. M. Nychyporuk, O. I. Oranska, O. K. Matkovsky, Yu. V. Grebel'na, B. Charmas, J. Skubiszewska–Zięba, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.