2D–наноструктуровані вуглецеві матеріали: ефекти окиснення та розупорядкування пакетів
DOI: https://doi.org/10.15407/hftp14.03.275
Анотація
Різноманітні 2D–вуглецеві матеріали демонструють значний вплив поверхневого окиснення, нагрівання, суспендування–сушіння, кріожелювання, набухання, адсорбції полярних і неполярних сполук на морфологічні, структурні та текстурні характеристики. Нагрівання при 120–150 °C може призвести до практичного колапсу пор між вуглецевими листами в стопках та сусідніми стопками, а питома поверхня (ПП) зменшується в 30–100 разів для оксидів графену (OГ). Структура ОГ досить аморфна, оскільки лише невеликі нанорозмірні фрагменти демонструють певне упорядкування. Крім того, інтенсивність лінії D (невпорядковані, дефектні структури з sp3 C атомами) для OГ подібна до інтенсивності лінії G (впорядковані структури з sp2 C атомами) у раманівських спектрах. Структура OГ досить аморфна, хоча і існують невеликі впорядковані кластери, тому лінії XRD (001) і (002) є доволі широкими. Структура оксиду графіту (GtO), яка ближча до структури графіту, ніж структура GO, характеризується головним чином лінією G (D дуже слабка) у спектрах комбінаційного розсіювання та основним піком XRD при 26.4° (характерним для графіту), що є широким подібно до піку XRD при 10° для OГ. Незважаючи на те, що пакети OГ мають тенденцію колапсувати під час нагрівання, вони можуть легко набухати не лише у воді, але й у рідкому азоті. Таким чином, використання ОГ у водних середовищах може забезпечити за рахунок набухання великі значення ПП, яка відповідає площині контактів з розчинником і молекулами чи іонами розчинених речовин. Це може забезпечити високу ефективність використання ОГ для очищення стічних вод, розділення розчинених речовин тощо. OГ, виготовлений із природного лускатого графіту як прекурсора (пластівці < 0.2 мм) за допомогою модифікованого методу іонної гідратації та сублімаційного сушіння, має низьку насипну густину і типовий світло–коричневий колір. Взаємодія ОГ з водою призводить до сильного набухання. Взаємодія між вуглецевими листами в сухому ОГ дуже сильна і неполярні молекули, такі як бензол, н–декан, погано проникають між листами, тобто інтеркаляційна адсорбція невелика, але молекули води можуть ефективно проникати (це скоріше інтеркаляційна адсорбція) між ними. Таким чином, запропонований метод синтезу ОГ з використанням природного графіту є ефективним і придатним для отримання ОГ для різних практичних застосувань.
Ключові слова
Посилання
Yang R.T. Adsorbents: Fundamentals and Applications. (New York: Wiley, 2003). https://doi.org/10.1002/047144409X
Somasundaran P. (Ed.) Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3
Ahuja S. (Ed.) Separation Science and Technology. V. 15. (Amsterdam: Elsevier, 2022).
Hussain C.M. (Ed.) Handbook of Polymer Nanocomposites for Industrial Applications. (Amsterdam: Elsevier, 2021).
Ahmad A., Kumar R., Jawaid M. (Eds.) Emerging Techniques for Treatment of Toxic Metals from Wastewater. (Amsterdam: Elsevier, 2022).
Ngu L.H. Carbon Capture Technologies. (Amsterdam: Elsevier, 2022). https://doi.org/10.1016/B978-0-323-90386-8.00028-0
Moreno-Piraján J.C., Giraldo-Gutierrez L., Gómez-Granados F. Porous Materials Theory and Its Application for Environmental Remediation. (Cham: Springer Nature, 2021). https://doi.org/10.1007/978-3-030-65991-2
Zhang J., Terrones M., Rae C., Mukherjee R., Monthioux M., Koratkar N., Kim Y.S., Hurt R., Frackowiak E., Enoki T., Chen Y., Chen Y., Bianco A. Carbon science in 2016: Status, challenges and perspectives. Carbon. 2016. 98: 708. https://doi.org/10.1016/j.carbon.2015.11.060
Zhuang X., Mai Y., Wu D., Zhang F., Feng X. Two-dimensional soft nanomaterials: A fascinating world of materials. Adv. Mater. 2015. 27(3): 403. https://doi.org/10.1002/adma.201401857
Zhu B.Y., Murali S., Cai W., Li X., Suk J.W., Potts J.R., Ruoff R.S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010. 22(35): 3906. https://doi.org/10.1002/adma.201001068
Soldano C., Mahmood A., Dujardin E. Production, properties and potential of graphene. Carbon. 2010. 48(8): 2127. https://doi.org/10.1016/j.carbon.2010.01.058
Zhu Y., James D.K., Tour J.M. New routes to graphene, graphene oxide and their related applications. Adv. Mater. 2012. 24(36): 4924. https://doi.org/10.1002/adma.201202321
Subrahmanyam K.S., Vivekchand S.R.C., Govindaraj A., Rao C.N.R. A study of graphenes prepared by different methods: characterization, properties and solubilisation. J. Mater. Chem. 2008. 18(13): 1517. https://doi.org/10.1039/b716536f
Hu Y.J., Jin J.A., Zhang H., Wu P., Cai C.X. Graphene: synthesis, functionalization and applications in chemistry. Acta Phys.-Chim. Sinica. 2010. 26: 2073.
Tang Y., Guo H., Xiao L., Yu S., Gao N., Wang Y. Synthesis of reduced graphene oxide/ magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf. A. 2013. 424: 74. https://doi.org/10.1016/j.colsurfa.2013.02.030
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958. 80(6): 1339. https://doi.org/10.1021/ja01539a017
Gun'ko V.M., Zaulychnyy Ya.V., Ilkiv B.I., Zarko V.I., Nychiporuk Yu.M., Ptushinskii Yu.G., Pakhlov E.M., Leboda R., Skubiszewska-Zięba J. Textural and electronic characteristics of mechanochemically activated composites with nanosilica and activated carbon. Appl. Surf. Sci. 2011. 258(3): 1115. https://doi.org/10.1016/j.apsusc.2011.09.047
Waheed A., Majeed A., Iqbal N., Ullah W., Shuaib A., Ilyas U., Bibi F., Rafique H.M. Specific capacitance and cyclic stability of graphene based metal / metal oxide nanocomposites: A review. J. Mater. Sci. Technol. 2015. 31(7): 699. https://doi.org/10.1016/j.jmst.2014.12.012
Deng Y., Fang C., Chen G. The developments of SnO2 / graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources. 2016. 304: 81. https://doi.org/10.1016/j.jpowsour.2015.11.017
Warner J.H., Schäffel F., Rummeli M., Bachmatiuk A. Graphene. Fundamentals and emergent applications. (Waltham: Elsevier, 2013).
Fei Q., Wei F. (Eds.) Advanced Hierarchical Nanostructured Materials. First Edition. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2014).
Luo B., Liu S., Zhi L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small. 2012. 8(5): 630. https://doi.org/10.1002/smll.201101396
Eigler S., Hirsch A. Chemistry with graphene and graphene oxide - Challenges for synthetic chemists. Ang. Chem. Int. Ed. 2014. 53(30): 7720. https://doi.org/10.1002/anie.201402780
Kim T.H., Merritt C.R., Ducati C., Bond A.D., Bampos N., Brown C.L. Bulk synthesis of graphene-like materials possessing turbostratic graphite and graphene nanodomains via combustion of magnesium in carbon dioxide. Carbon. 2019. 149: 582. https://doi.org/10.1016/j.carbon.2019.04.035
Chua C.K., Ambrosi A., Sofer Z., Macková A., Havránek V., Tomandl I., Pumera M. Chemical preparation of graphene materials results in extensive unintentional doping with heteroatoms and metals. Chem. Eur. J. 2014. 20(48): 15760. https://doi.org/10.1002/chem.201404205
Chang H., Wu H. Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv. Funct. Mater. 2013. 23(16): 1984. https://doi.org/10.1002/adfm.201202460
Bai H., Li C., Shi G. Functional composite materials based on chemically converted graphene. Adv. Mater. 2011. 23(9): 1089. https://doi.org/10.1002/adma.201003753
Wang S., Minami D., Kaneko K. Comparative pore structure analysis of highly porous graphene monoliths treated at different temperatures with adsorption of N2 at 77.4 K and of Ar at 87.3 K and 77.4 K. Microporous and Mesoporous Materials. 2015. 209: 72. https://doi.org/10.1016/j.micromeso.2015.01.014
Seehra M.S., Narang V., Geddam U.K., Stefaniak A.B. Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification. Carbon. 2017. 111: 380. https://doi.org/10.1016/j.carbon.2016.10.010
Gupta S., Chatterjee S., Ray A.K., Chakraborty A.K. Graphene - metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators B. 2015. 221: 1170. https://doi.org/10.1016/j.snb.2015.07.070
Yang T., Lin H., Zheng X., Loh K.P., Jia B. Tailoring pores in graphene-based materials: from generation to applications. J. Mater. Chem. A. 2017. 5(32): 16537. https://doi.org/10.1039/C7TA04692H
Aghigh A., Alizadeh V., Wong H.Y., Islam S., Amin N., Zaman M. Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination. 2015. 365: 389. https://doi.org/10.1016/j.desal.2015.03.024
Smith S.C., Rodrigues D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon. 2015. 91(7): 122. https://doi.org/10.1016/j.carbon.2015.04.043
Guerrero-Fajardo C.A., Giraldo L., Moreno-Piraján J.C. Graphene oxide: study of pore size distribution and surface chemistry using immersion calorimetry. Nanomaterials. 2020. 10(8): 1492. https://doi.org/10.3390/nano10081492
Gun'ko V.M., Turov V.V., Whitby R.L.D., Prykhod'ko G.P., Turov A.V., Mikhalovsky S.V. Interactions of single and multi-layer graphene oxides with water, methane, organic solvents and HCl studied by 1H NMR. Carbon. 2013. 57: 191. https://doi.org/10.1016/j.carbon.2013.01.063
Huang Y., Zeng M., Ren J., Wang J., Fan L., Xu Q. Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf. A. 2012. 401: 97. https://doi.org/10.1016/j.colsurfa.2012.03.031
Yao C., Zhao J., Ge H., Ren J., Yin T., Zhu Y., Ge L. Fabrication of dual sensitive titania (TiO2)/ graphene oxide (GO) one-dimensional photonic crystals (1DPCs). Colloids Surf. A. 2014. 452: 89. https://doi.org/10.1016/j.colsurfa.2014.03.078
Hunt A., Dikin D.A., Kurmaev E.Z., Boyko T.D., Bazylewski P., Chang G.S., Moewes A. Epoxide speciation and functional group distribution in graphene oxide paper-like materials. Adv. Funct. Mater. 2012. 22(18): 3950. https://doi.org/10.1002/adfm.201200529
Park M., Kim K.H., Kim M., Lee Y. NH3 gas sensing properties of a gas sensor based on fluorinated graphene oxide. Colloids Surf. A. 2016. 490: 104. https://doi.org/10.1016/j.colsurfa.2015.11.028
Gu D., Fein J.B. Adsorption of metals onto graphene oxide: Surface complexation modeling and linear free energy relationships. Colloids Surf. A. 2015. 481: 319. https://doi.org/10.1016/j.colsurfa.2015.05.026
Low C.T.J. Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon. 2012. 54: 1. https://doi.org/10.1016/j.carbon.2012.11.030
Toda K., Furue R., Hayami S. Recent progress in applications of graphene oxide for gas sensing: A review. Anal. Chim. Acta. 2015. 878: 43. https://doi.org/10.1016/j.aca.2015.02.002
Kim J., Jeong E., Lee Y. Preparation and characterization of graphite foams. J. Ind. Eng. Chem. 2015. 32: 21. https://doi.org/10.1016/j.jiec.2015.09.003
Zhou H., Ganesh P., Presser V., Wander M.C.F., Fenter P., Kent P.R.C., Jiang D., Chialvo A.A., McDonough J., Shuford K.L., Gogotsi Y. Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory. Phys. Rev. B. 2012. 85(3): 035406(1-11). https://doi.org/10.1103/PhysRevB.85.035406
Whitby R.L.D., Gun'ko V.M., Korobeinyk A., Busquets R., Cundy A.B., László K., Skubiszewska-Zięba J., Leboda R., Tombácz E., Toth I.Y., Kovacs K., Mikhalovsky S.V. Driving forces of conformational changes in single-layer graphene oxide. ACS Nano. 2012. 6(5): 3967. https://doi.org/10.1021/nn3002278
Yoon Y., Kyu W., Hwang T., Ho D., Seok W., Kang J. Comparative evaluation of magnetite - graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. J. Hazard. Mater. 2016. 304: 196. https://doi.org/10.1016/j.jhazmat.2015.10.053
Kurnianditia L., Ong W., Sea W., Chai S. Heteroatom doped graphene in photocatalysis: A review. Appl. Surf. Sci. 2015. 358(Part A): 2. https://doi.org/10.1016/j.apsusc.2015.08.177
Ma J., Cai P., Qi W., Kong D., Wang H. The layer-by-layer assembly of polyelectrolyte functionalized graphene sheets: A potential tool for biosensing. Colloids Surf. A. 2013. 426: 6. https://doi.org/10.1016/j.colsurfa.2013.02.039
Manivel P., Kanagaraj S., Balamurugan A., Ponpandian N., Mangalaraj D. Rheological behavior and electrical properties of polypyrrole / thermally reduced graphene oxide nanocomposite. Colloids Surf. A. 2014. 441: 614. https://doi.org/10.1016/j.colsurfa.2013.10.031
Duster T.A., Szymanowski J.E.S., Na C., Showalter A.R., Bunker B.A., Fein J.B. Surface complexation modeling of proton and metal sorption onto graphene oxide. Colloids Surf. A. 2015. 466: 28. https://doi.org/10.1016/j.colsurfa.2014.10.049
Wu J., Chen C., Hao Y., Wang C. Enhanced electrochemical performance of nanosheet ZnO / reduced graphene oxide composites as anode for lithium-ion batteries. Colloids Surf. A. 2015. 468: 17. https://doi.org/10.1016/j.colsurfa.2014.12.009
Wei Z., Barlow D.E., Sheehan P.E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett. 2008. 8(10): 3141. https://doi.org/10.1021/nl801301a
Liu L., Wang L., Gao J., Zhao J., Gao X., Chen Z. Amorphous structural models for graphene oxides. Carbon. 2012. 50(4): 1690. https://doi.org/10.1016/j.carbon.2011.12.014
Whitby R.L.D., Korobeinyk A., Gun'ko V.M., Busquets R., Cundy A.B., Laszlo K., Skubiszewska-Zięba J., Leboda R., Tombacz E., Toth I., Kovacs K., Mikhalovsky S.V. pH driven-physicochemical conformational changes of single-layer graphene oxide. Chem. Commun. 2011. 47(34): 9645. https://doi.org/10.1039/c1cc13725e
Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
Erickson K., Erni R., Lee Z., Alem N., Gannett W., Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010. 22(40): 4467. https://doi.org/10.1002/adma.201000732
Barroso-Bujans F., Cerveny S., Verdejo R., del Val J.J., Alberdi J.M., Alegría A., Colmenero J. Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation. Carbon. 2010. 48(4): 1079. https://doi.org/10.1016/j.carbon.2009.11.029
Barroso-Bujans F., Cerveny S., Alegría A., Colmenero J. Sorption and desorption behavior of water and organic solvents from graphite oxide. Carbon. 2010. 48(11): 3277. https://doi.org/10.1016/j.carbon.2010.05.023
Barroso-Bujans F., Fierro J.L.G., Alegría A., Colmenero J. Revisiting the effects of organic solvents on the thermal reduction of graphite oxide. Thermochim. Acta. 2011. 526(1-2): 65. https://doi.org/10.1016/j.tca.2011.08.023
Zhu K., Meng A., Wang W., Song G., Zhang M., Wei Q., Du Y., Zhang D., Li Q., Li Z. Influence of oxygen-containing groups on the photocatalytic properties of ZnO/graphene oxide composite. Mater. Lett. 2016. 169: 172. https://doi.org/10.1016/j.matlet.2016.01.067
Ma Y., Di H., Yu Z., Liang L., Lv L., Pan Y., Zhang Y., Yin D. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research. Appl. Surf. Sci. 2016. 360(Part B): 936. https://doi.org/10.1016/j.apsusc.2015.11.088
Liu J., Liu W., Wang Y., Xu M., Wang B. A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu(II) from aqueous solutions. Appl. Surf. Sci. 2016. 367: 327. https://doi.org/10.1016/j.apsusc.2016.01.176
Naghdi S., Jaleh B., Shahbazi N. Reversible wettability conversion of electrodeposited graphene oxide/titania nanocomposite coating: Investigation of surface structures. Appl. Surf. Sci. 2016. 368: 409. https://doi.org/10.1016/j.apsusc.2016.01.193
Jain R., Dhanjai, Sinha A. Graphene-zinc oxide nanorods nanocomposite based sensor for voltammetric quantification of tizanidine in solubilized system. Appl. Surf. Sci. 2016. 369: 151. https://doi.org/10.1016/j.apsusc.2016.02.077
Wang H., Gao H., Chen M., Xu X., Wang X., Pan C., Gao J. Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl. Surf. Sci. 2016. 360(Part B): 840. https://doi.org/10.1016/j.apsusc.2015.11.075
Zhang L., He Y., Feng S., Zhang L., Zhang L., Jiao Z., Zhan Y., Wang Y. Preparation and tribological properties of novel boehmite/graphene oxide nano-hybrid. Ceram. Int. 2016. 42(5): 6178. https://doi.org/10.1016/j.ceramint.2015.12.178
Kang X.J., Zhang J.M., Sun X.W., Zhang F.R., Zhang Y.X. One-pot synthesis of vanadium dioxide nanoflowers on graphene oxide. Ceram. Int. 2016. 42(6): 7883. https://doi.org/10.1016/j.ceramint.2016.01.170
Nguyen N.S., Das G., Yoon H.H. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 2016. 77: 372. https://doi.org/10.1016/j.bios.2015.09.046
Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Matkovsky A.K., Prykhod'ko G.P., Nychiporuk Yu.M., Pakhlov E.M., Krupska T.V., Balakin D.Yu., Charmas B., Andriyko L.S., Skubiszewska-Zięba J., Marynin A.I., Ukrainets A.I., Kartel M.T. Multi-layer graphene oxide alone and in a composite with nanosilica: preparation and interactions with polar and nonpolar adsorbates. Appl. Surf. Sci. 2016. 387: 736. https://doi.org/10.1016/j.apsusc.2016.06.196
Dovbeshko G.I., Kopan V. S., Revo S.L., Nishchenko M. M., Prikhod'ko G. P., Pyatkovskiy M. L., Sementsov Yu. I., Vestmayer M. Nanostructure of exfoliated graphite. Phys. Met. Adv. Technol. 2005. 27(3): 281.
Kartel M., Sementsov Yu., Dovbeshko G., Karachevtseva L., Makhno S., Aleksyeyeva T., Grebel'na Yu., Styopkin V., Bo W., Stubrov Yu. Lamellar structures from graphene nanoparticles produced by anode oxidation. Adv. Mater. Lett. 2017. 8(3): 212. https://doi.org/10.5185/amlett.2017.1428
Sementsov Yu., Makhno S., Kartel M., Bo W., Dovbeshko G., Styopkin V., Nedilko S. Graphene nanoparticles and graphene nanoparticles - polyamide 12/12 composites. Int. J. Innov. Sci. Eng. Technol. 2017. 4(8): 71.
Fiji. 2023. https://fiji.sc/ (version 1.54b), https://imagej.net/Local_Thickness.
Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Himia, Fizika ta Tehnologia Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317
Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117
Ravikovitch P.I., Neimark A.V. Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir. 2006. 22(26): 11171. https://doi.org/10.1021/la0616146
Gun'ko V.M., Zarko V.I., Chuikov B.A., Dudnik V.V., Ptushinskii Yu.G., Voronin E.F., Pakhlov E.M., Chuiko A.A. Temperature-programmed desorption of water from fumed silica, silica/titania, and silica/alumina. Int. J. Mass Spectrom. Ion Process. 1998. 172(3): 161. https://doi.org/10.1016/S0168-1176(97)00269-3
Pedretti A., Mazzolari A., Gervasoni S., Fumagalli L., Vistoli G. The VEGA suite of programs: an versatile platform for cheminformatics and drug design projects. Bioinformatics. 2021. 37(8): 1174. https://doi.org/10.1093/bioinformatics/btaa774
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021. 30(1): 70. https://doi.org/10.1002/pro.3943
Stewart J.J.P. MOPAC2022 (ver. 22.06). Stewart Computational Chemistry. web: HTTP://OpenMOPAC.net.
Whitby R.L.D., Korobeinyk A.V., Gun'ko V. M., Wright D.B., Dichello G., Smith L.C., Fukuda T., Maekawa T., Mikhalovsky S.V., Thorpe J.R. Single-layer graphenes functionalized with polyurea: architectural control and biomolecule reactivity. J. Phys. Chem. C. 2013. 117(22): 11829. https://doi.org/10.1021/jp4022213
Gun'ko V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Himia, Fizika ta Tehnologia Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163
Howe J.Y., Rawn C.J., Jones L.E., Ow H. Improved crystallographic data for graphite. Powder Diffr. 2003. 18(2): 150. https://doi.org/10.1154/1.1536926
Acik M., Lee G., Mattevi C., Pirkle A., Wallace R.M., Chhowalla M., Cho K., Chabal Y. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J. Phys. Chem. C. 2011. 115(40): 19761. https://doi.org/10.1021/jp2052618
DOI: https://doi.org/10.15407/hftp14.03.275
Copyright (©) 2023 V. M. Gun’ko, Yu. I. Sementsov, L. S. Andriyko, Yu. M. Nychyporuk, O. I. Oranska, O. K. Matkovsky, Yu. V. Grebel'na, B. Charmas, J. Skubiszewska–Zięba, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.