Chemistry, Physics and Technology of Surface, 2013, 4 (1), 47-54.

Physical-Chemical and Photocatalytic Properties of V-Mg Oxide Compositions Synthesized by Different Methods



S. V. Khalameida, V. V. Sydorchuk, J. Skubiszewska-Zięba, R. Leboda, V. O. Zazhigalov

Abstract


New approaches to vanadium-magnesium oxide catalysts synthesis have been proposed: using of mechanochemical (MChT), hydrothermal (HTT), and microwave (MWT) treatments; and V2O5 gel as initial reagent. XRD, DTA-TG, FTIR and UV-Vis spectroscopy, adsorption of nitrogen have been used for study of precursors and catalysts structure. Magnesium methavanadate MgV2O6·2H2O with high specific surface area transformed into orthovanadate Mg3V2O8 – pyrovanadate Mg2V2O7 mixture is formed as a result of MWT and HTT. The sample prepared from microwave precursor possesses the highest specific surface area, developed porous structure, and maximum photocatalytic activity under visible light on safranin T degradation in aqueous medium.


Full Text:

PDF (Українська)

References


Gao X., Ruiz P., Xin Q., Guo X., Delmon B. Catal. Lett. 1994. 23. 321. doi 10.1007/BF00811367

Centi G., Cavani F., Trifiro F. Selective Oxidation by Heterogeneous Catalysis.  NewYork: Kluwer Plenum, 2001.

Rybarczyk P., Berndt H., Radnik J., Pohl M.-M., Buyevskaya O., Baerns M., Bruckner A. J. Catal. 2001. 202. 45. doi 10.1006/jcat.2001.3251

Pak C., Bell A.T., Tilley T.D. J. Catal. 2002. 206. 49. doi 10.1006/jcat.2001.3473

Solsona B., Dejoz A., Vázquez M.I., Márqueza F., López Nieto J.M. Appl. Catal. A. 2001. 208. 99. doi 10.1016/S0926-860X(00)00686-4

Wang D., Zou Z., Ye J. Res. Chem. Intermed. 2005. 31. 433. doi:10.1163/1568567053956635

Wang D., Tang J., Zou Z., Ye J. Chem. Mater. 2005. 17. 5177. doi 10.1021/cm051016x.

Livage J. Materials. 2010. 3. 4175. doi:10.3390/ma3084175

Zazhigalov V.A., Khalameida S.V., Litvin N.S. et al. Kinetics Catal. 2008. 49. 692.  doi 10.1134/S0023158408050145

Ulicka L., Hronska S. Thermochim. Acta. 1989. 143. 325. doi 10.1016/0040-6031(89)85071-3

Jin M., Cheng Z., Jiang X. et al. Chinese J. Catal. 2010. 31. 1177. doi: 10.3724/SP.J.1088.2010.00204

Busca G., Ricchiardi G., Sam D.S.H., Volta J.-C. J. Chem. Soc. Faraday Trans. 1994. 94. 1161. doi: 10.1039/FT9949001161

Sakurai Y., Suzaki T., Nakagawa K. et al. J. Catal. 2002. 209. 16. doi 10.1006/jcat.2002.3593

Gao X., Bare S.R., Weckhuysen B.M., Wachs I.E. J. Phys. B. 1998. 102. 10842. doi: 10.1021/jp9826367

Сидорчук В.В., Халамейда С.В., Зажигалов В.А. Образование пористых ванадий- и молибденсодержащих оксидов при механохимическом активировании непористых порошков // Неорган. матер. – 2009. – Т. 45, № 1. – С. 1362–1369.

Sydorchuk V., Khalameida S., Zazhigalov V. et al. Appl.Surf. Sci. 2010. 257. 446. doi 10.1016/j.apsusc.2010.07.009

Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. – Новосибирск: Изд-во СО РАН, 2004. – 440 с.




Copyright (©) 2013 S. V. Khalameida, V. V. Sydorchuk, J. Skubiszewska-Zięba, R. Leboda, V. O. Zazhigalov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.