Chemistry, Physics and Technology of Surface, 2023, 14 (1), 53-66.

Colloidal-chemical synthesis of composite bentonite - ferromagnetic powder



DOI: https://doi.org/10.15407/hftp14.01.053

V. A. Bohatyrenko, D. S. Kamenskyh, V. O. Yevdokymenko, O. V. Andreieva, M. O. Olyanovska

Abstract


In this paper it is discussed the colloidal-chemical method of synthesis of dispersed composite bentonite-ferromagnetic powders that are stable to oxidation. It is shown that for this purpose it is advisable to use acid-activated bentonite clay with a high content of clay mineral - montmorillonite. Modified bentonite is a slightly amorphized silica product that serves as a porous matrix for crystallization of goethite α-FeOOH. The formation of goethite occurs at the centers of crystallization - particles of ferrihydrite stabilized by activated bentonite (Fh) during precipitation with an ammonia solution from a ferrum(ІІІ) hydroxide FeO(OH)×nH2O colloidal solution. In the resulting composite, goethite particles are cemented in the aluminosilicate framework of activated dispersed clay as a result of the interpenetration of the structures of the double layered hydroxide and activated bentonite. Further recrystallization of goethite with the formation of mainly magnetite and possibly maghemite in the structure of activated bentonite is provided by thermal firing of composite goethite powder with the addition of metallic iron powder. The methods of IR spectroscopy, X-ray structural analysis, electron microscopy and the study of magnetic properties showed that the obtained composite powder is environmentally friendly and exhibits the properties of a soft magnetic material. Such powders are promising for use as sorbents for environmental cleaning, as well as for biomedical purposes due to their low toxicity and high value of saturation magnetization.


Keywords


acid activation of clays; bentonite; montmorillonite; thermal firing; composite bentonite-ferromagnetic powders; magnetic properties

Full Text:

PDF (Українська)

References


Fadillah G., Yudha S.P., Sagadevan S., Fatimah Is, Oki M. Magnetic iron oxide/clay nanocomposites for adsorption and catalytic oxidation in water treatment applications. Open Chem. 2020. 18(1): 1148. https://doi.org/10.1515/chem-2020-0159

Moreno R., Poyser S., Meilak D., Meo A., Jenkins S., Lazarov V.K., Vallejo-Fernandez G., Majetich S., Evans R.F.L.The role of faceting and elongation on the magnetic anisotropy of magnetite Fe3O4 nanocrystals. Sci. Rep. 2020. 10(1): 2722. https://doi.org/10.1038/s41598-020-58976-7

Ltaı̈ef S., Casal B., Aranda P., Martı́n-Luengo M.A., Ruiz-Hitzky E. Fe-containing pillared clays as catalysts for phenol hydroxylation. Appl. Clay Sci. 2003. 22(6): 263. https://doi.org/10.1016/S0169-1317(03)00079-6

Pecini E., Avena M. Clay-Magnetite Co-Aggregates for Efficient Magnetic Removal of Organic and Inorganic Pollutants. Minerals. 2021. 11(9): 927. https://doi.org/10.3390/min11090927

Dong W., Ding J., Wang W., Zong L., Xu J., Wang A. Magnetic nano-hybrids adsorbents formulated from acidic leachates of clay minerals. J. Cleaner Prod. 2020. 256: 120383. https://doi.org/10.1016/j.jclepro.2020.120383

Dontsova T., Yanushevska L. Mineral-based magnetic nanocomposite sorbents. Water and Water Purification Technologies. Scientific and Technical News. 2020. 1(26): 26. https://doi.org/10.20535/2218-93002612020199286

Natarajan S., Harini K., Gajula G.P., Sarmento B., Neves-Petersen M.T., Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. Review. BMC Mater. 2019. 1: 2. https://doi.org/10.1186/s42833-019-0002-6

Zaitseva M.P. Ph.D (Chem.) Thesis. (Moscow, 2019). [in Russian].

Ghazanfari M.R., Kashefi M., Shams S.F., Jaafari M.R. Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int. 2016. 2016: 7840161. https://doi.org/10.1155/2016/7840161

Turanskaya S.P., Kaminsky A.N., Kusyak N.V., Turov V.V., Gorbyk P.P. Synthesis, properties and use of magnetically controlled adsorbents. Surface. 2012. 4(19): 266.

Wei Wu, Zhaohui Wu, Taekyung Yu, Changzhong Jiang, Woo-Sik Kim. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015. 16(2): 023501. https://doi.org/10.1088/1468-6996/16/2/023501

Gallo-Cordova A., Streitwieser D.A., Puerto Morales M., Ovejero G.J. Magnetic Iron Oxide Colloids for Environmental Applications. In: Colloids - Types, Preparation and Applications. (Aswan University, 2021). EBook. https://doi.org/10.5772/intechopen.95351

Zaytseva M.P., Muradova A.G., Sharapaev A.I., Yurtov E.V., Grebennikov I.S., Savchenko A.G. Fe3O4/SiO2 core shell nanostructures: Preparation and characterization. Russ. J. Inorg. Chem. 2018. 63(12): 1684. https://doi.org/10.1134/S0036023618120239

Grebennikov I.S., Savchenko A.G., Zaytseva M.P., Muradova A.G., Yurtov E.V. Structure and Magnetic Properties of Nanopowders of Iron Oxides and Hybrid Nanopowders of the Core-Shell Type Based on Them. Bull. Russ. Acad. Sci. Phys. 2018. 82(9): 1222. https://doi.org/10.3103/S1062873818090125

Makarchuk O.V. Ph.D (Techn.) Thesis. (Kyiv, 2018). [in Ukrainian].

Andreeva O.O. Influence of sedimentation conditions on the formation of industrial deposits of bentonite clay. Oceanographic journal (Problems, methods and means of research of the World Ocean). 2020. 2(13): 80.

Andreeva O.O., Kurylo M. Use of modern classifications of reserves and resources in the assessment of domestic deposits of bentonite clays. Bulletin of Taras Shevchenko Kyiv National University. Geology. 2013. 1: 56.

Dong W., Ding J., Wang W., Zong L., Xu J., Wang A. Magnetic nano-hybrids adsorbents formulated from acidic leachates of clay minerals. J. Cleaner Prod. 2020. 256: 120383. https://doi.org/10.1016/j.jclepro.2020.120383

Munoz O., Escobar-Cerezo J., Guirado D., Moreno F. Light scattering by Martian dust analogues. In: Mars Atmosphere Modelling and Observation. Proc. 16th Int. Workshop (January, Granada, Spain. Project: The Amsterdam-Granada Light Scattering database, 2017).

Pecini E., Avena M. Clay-magnetite co-aggregates for efficient magnetic removal of organic and inorganic pollutants. Minerals. 2021. 11(9): 927. https://doi.org/10.3390/min11090927

Images of Clay. Mineralogical Society. https://www.minersoc.org/images-of-clay.html.

Franco F., Pozo M., Cecilia J.A., Benítez-Guerrero M., Lorente M. Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Appl. Clay Sci. 2016. 120: 70. https://doi.org/10.1016/j.clay.2015.11.021

Horri N., Sanz-Pérez E.S., Arencibia A., Sanz R., Frini-Srasra N., Srasra E. Effect of acid activation on the CO2 adsorption capacity of montmorillonite. Adsorption. 2020. 26: 793. https://doi.org/10.1007/s10450-020-00200-z

Lavrynenko O.M. Ferrihydrite: laboratory synthesis, structure and phase transformations. Mineralogical Journal. 2011. 33(4): 12. [in Ukrainian].

Barakan Sh., Aghazadeh V. Separation and characterisation of montmorillonite from a low-grade natural bentonite: using a non-destructive method. Micro Nano Lett. 2019. 14(6): 688. https://doi.org/10.1049/mnl.2018.5364

Biglari Quchan Atigh Z., Sardari P., Moghiseh E., Lajayer B.A., Hursthouse A.S. Purified montmorillonite as a nano-adsorbent of potentially toxic elements from environment: an overview. Nanotechnol. Environ. Eng. 2021. 6: 12. https://doi.org/10.1007/s41204-021-00106-3

Belachew N., Bekele G. Synergy of Magnetite Intercalated Bentonite for Enhanced Adsorption of Congo Red Dye. Silicon. 2020. 12: 603. https://doi.org/10.1007/s12633-019-00152-2

Majzlan J., Grevel K.-D., Navrotsky A. Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). Am. Mineral. 2003. 88(6): 855. https://doi.org/10.2138/am-2003-5-614

Majzlan J., Grevel K.-D., Navrotsky A. Thermodynamics of Fe oxides: Part I. Entropy at standard temperature and pressure and heat capacity of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). Am. Mineral. 2003. 88(5): 846. https://doi.org/10.2138/am-2003-5-613

Shu Z., Wang Sh. Synthesis and Characterization of Magnetic Nanosized Composite Particles. J. Nanomater. 2009. 2009: 340217. https://doi.org/10.1155/2009/340217

Cui H., Ren W., Lin P., Liu Y. Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. J. Exp. Nanosci. 2013. 8(7-8): 869. https://doi.org/10.1080/17458080.2011.616541

Gerasyn V.A., Kurenkov V.V. Joint treatment of bentonites with inorganic polyelectrolytes and cationic pav to facilitate exfoliation of organoclays. Izv. universities Chemistry and chemistry technology. 2019. 62(5): 71. https://doi.org/10.6060/ivkkt.20196205.5746




DOI: https://doi.org/10.15407/hftp14.01.053

Copyright (©) 2023 V. A. Bohatyrenko, D. S. Kamenskyh, V. O. Yevdokymenko, O. V. Andreieva, M. O. Olyanovska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.