Chemistry, Physics and Technology of Surface, 2023, 14 (1), 76-82.

Location of Al and Si atoms in substituted boron carbide



DOI: https://doi.org/10.15407/hftp14.01.076

V. V. Garbuz, V. A. Sydorenchuk, V. B. Muratov, L. N. Kuzmenko, A. A. Vasiliev, P. V. Mazur, M. V. Karpets, T. V. Khomko, T. A. Silinska, T. N. Terentyeva, L. O. Romanova

Abstract


Boron carbide is a material of interest for personal body armor, but its low fracture toughness and amorphization limits its widespread use. Al and Si atoms in doped boron carbide reduce this problem. Passage of the substitution reaction in boron carbide powders with Al and Si vapors in vacuum was found. Certification methods: chemical analysis, full-profile XPA (Powder Cell for Windows. Version 2.4 FREE, W. Kraus & G. Nolze) and modeling in format of the 15-atomic unit cell B12(C-C-C) of trigonal syngony, spatial group R3 ̅m, Z = 3. A mixture of powders of boron carbide, aluminum or silicon is heat treated in vacuum at conventional evaporation temperatures of Al (1520 K) or Si (1640 K) for 1–5 h. The samples were purified with alkali and analyzed by arbitration chemical analysis for boron, carbon, aluminum and silicon. The formula composition of the input powders of boron carbide was determined as B12[(C-В-C)x(C-C-C)1-x], where x = 0.4–0.6. The aluminum substitution reaction takes place in both types of boron carbide chains and corresponds to the formula B12(C-Al-C) or AlB12C2. In the presence of silicon, the reaction took place exclusively at the positions of the tri-carbon chains. The composition of the obtained solid solution corresponds to - B12[(C-B-C)0.4(C-Si-C)0.6], starting powder B12[(C-B-C)0.4(C-C-C)0.6]. The absence of boron phases of silicide, such as SiB3 (SiB2.89), SiB6, SiBn (n ≈ 23) indicated greater resistance of     C–B–C chains to interaction with vaporous Si. The content of Al and Si in the substituted phases is equal to 13.3 and 4.0 (% at.). Equivalent molar amounts of Al8B4C7 and SiC of gas-nano-phase origin were measured in the reaction products with vapor-like Al and Si. The area of tolerance chains of the boron carbide structure in the format of the average specific electronegativity (χN-Sh/rai) was found. It is in the range of values: 2.79 ≥ ССС ≥ СВС ≥ CSiC ≥ ВВС ≥ 2.18.


Keywords


Al; Si; atoms; location; substituted; powders; boron carbide; area of tolerance; structure

Full Text:

PDF

References


Stachin J.D., Pyzik A., Carrol D., Prunier A., Allen T. Boron Carbide Aluminum Cermet is for Pressure Housing Applications. (RDT&E Division, San Diego, California 92152-5000, Technical Report 1574, 1992).

Ghasali E., Alizadeh M., Ebadzadeh T., hossein Pakseresht A., Ranbari A. Investigation on microstructural and mechanical properties of B4C-aluminum matrix composites prepared by microwave sintering. J. Mater. Res. Technol. 2015. 4(4): 411. https://doi.org/10.1016/j.jmrt.2015.02.005

Pramono A., Kommel L., Kollo L., Veinthal R. The Aluminum Based Composite Produced by Self-Propagating High Temperature Synthesis. Mater. Sci. (Medziagotira). 2016. 22 (1): 1392. https://doi.org/10.5755/j01.ms.22.1.7500

Zhao Q., Liang Yu., Zhang Zh., Li Xi., Ren L. Microstructure and Dry-Sliding Wear Behavior of B4C Ceramic Particulate Reinforced Al 5083 Matrix Composite. Metals. 2016. 6(227): 1. https://doi.org/10.3390/met6090227

Wu S., Xiao G., Xue L., Xue L., Zhai M., Zhu W. Solid reaction between Al and B4C. Can. Metall. Q. 2015. 54(2): 247. https://doi.org/10.1179/1879139514Y.0000000178

Patent US US 8,030,234 B2. Pyzik A.J., Newman R.A., Chartier M.A., Wetzel A.M., Haney C.N. Int - Classification5 C043 35/563 (2006-01), C04B 35/58 (2006-01). Aluminum boron carbide composite and method ti form said composite. 2011.

Patent US 5,039,633. Int. Cl.5 - C22C 29/04. US - Cl. 501/93; 75/ 244. Pyzik A.J., Nilsson R.T. B4C/Al cermets and method for making same. 1991.

Khan A.U., Etzold A.M., Yang Xi., Domnich V., Xie K.Y., Hwang Ch., Behler K.D., Chen M., An Q., LaSalvia J.C., Hemker K.J., Goddard W.A., Haber R.A. Locating Si atoms in Si-Doped Boron Carbide: a Route to Understand Amorphization Mitigation Mechanism. Acta Mater. 2018. 157(11): 1. https://doi.org/10.1016/j.actamat.2018.07.021

Xiang S., Ma L., Yang B., Dieudonne Y., Pharr G.M., Lu J., Yadav D., Hwang C., LaSalvia J.C., Haber R.A., Hemker K.J., Xie K.Y. Tuning the deformation mechanisms of boron carbide via silicon doping. Sci. Adv. 2019. 5(10): 0352. https://doi.org/10.1126/sciadv.aay0352

Domnich V., Reynaud S., Haber R.A., Chhowalla M. Boron Carbide: structure; properties; and stability under stress. J. Am. Ceram. Soc. 2011. 94(11): 3605. https://doi.org/10.1111/j.1551-2916.2011.04865.x

Tvergaard V., Hutchinson J.W. Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy. J. Am. Ceram. Soc. 1988. 71(3): 157. https://doi.org/10.1111/j.1151-2916.1988.tb05022.x

Ordanyan S.S., Nesmelov D.D., Ovsienko A.I. Phase formation in the process of reaction sintering of B4C-SiC-Si (Al) composites. Refract. Ind. Ceram. 2017. 12: 42. [in Russian]. https://doi.org/10.17073/1683-4518-2017-12-42-48

Muratov V.B., Mazur P.V., Garbuz V.V., Vasiliev O.O. Ceramics based on AlB12C2. In: National Technical University of Ukraine "Igor Sicorskyi Kyiv Polytechnic Institute" - 2018. Int. Sams. Conf. (Kyiv, 2018). P 109. [in Ukraine].

Vasiliev O., Muratov V., Mazur P., Bily V., Karpets M., Bekenev V., Garbuz V., Khomko T., Kartuzov V. Silicon in Inter icosahedra Chains of Boron Carbide. J. Eur. Ceram. Soc. 2022. 42(13): 5512. https://doi.org/10.1016/j.jeurceramsoc.2022.05.056

Patent UA, IPC (2016.01), C01B 35/04 (2016.01). Mazur P.V., Muratov V.B., Garbuz V.V., Kartuzov E.V., Vasiliev O.O. Method for obtaining AlB12 aluminum dodecaboride powder. 2016.

GOST 5744-85. Boron carbide grinding materials. Technical conditions. https://rosstandart.msk.ru/gost/001.025.100.070/gost-5744-85/. [in Russian].

GOST 26564.1-85. Silicon carbide refractory materials and products. Determination of silicon carbide. - Test methods. - Part 2. 2004.

GOST 26327-84. Grinding materials from silicon carbide technical conditions. 1994.

Dubok V.A., Kornilova V.I., Pechentkovskaya L.E., Yukhimenko E.V., Kabannik G.T., Garbuz V.V., Omelchenko G.Z. Improvement of methods of chemical analysis of refractory compounds and metal alloys. (Kyiv: Scientific Opinion, 1988).

Garbuz V.V., Bega M.D., Petrova V.A., Suvorova L.S., Kuzmenko L.M., Shatskikh S.K. Study of oxidation of industrial powders of boron carbide by methods of chemical analysis. Powder metall. 2014. 7/8: 151. [in Ukrainian].

Garbuz V.V., Kuzmenko L.M., Suvorova L.S., Petrova V.A., Silinskaya T.A., Shatskikh S.K. Quantitative determination by the method of selective oxidation of free carbon nanoforms in boron carbide powders. Powder metall. 2016. 1/2: 50. [in Russian]. https://doi.org/10.1007/s11106-016-9777-0

Garbuz V.V., Zakharov V.V., Muratov V.B., Symanovsky A.P., Derenovskaya N.A., Kuzmenko L.N., Galadzhii O.F., Shatskikh S.K. Distribution of catalyst components in products of plasma-arc synthesis of carbon nano-structured materials. Material Science of Nanostructures. 2006. 1: 74. [in Russian].

Garbuz V.V., Petrova V.A., Yakovlev A.V., Nuzhda S.V., Kovtun V.I. Evaluation of the composition of products of shock wave sintering of SWS in the system: nano-TiN-BNsf. Material Science of Nanostructures. 2008. 2/4: 98. [in Russian].

Korogly Ah., Derek P. Thompson Production of AlB12, AlB24C4, AlB12C2 and Al3B48C2 powders in vacuum. J. Eur. Ceram. Soc. 2012. 32: 3501. https://doi.org/10.1016/j.jeurceramsoc.2012.04.032

Noorizadeh S., Shakerzadeh Eh. A New Scale of Electronegativity Based on Electrophilicity Index. J. Phys. Chem. A. 2008. 112(15): 3486. https://doi.org/10.1021/jp709877h

Vainshtein B.K., Frydkin V.M., Indebom V.L. Modern crystallography. The structure of crystals V. 2. (Moscow: Nauka, 1979). [in Russian].

Day K., Selbin D. Theoretical inorganic chemistry. (Moscow: Chemistry, 1976). [in Russian].

Konovalykhin S.V., Ponomarev V.I. Carbon in boron carbide. Crystal structure of B11.4C3.6. J. Inorg. Chem. 2009. 54(2): 229. [in Russian]. https://doi.org/10.1134/S0036023609020053




DOI: https://doi.org/10.15407/hftp14.01.076

Copyright (©) 2023 V. V. Garbuz, V. A. Sydorenchuk, V. B. Muratov, L. N. Kuzmenko, A. A. Vasiliev, P. V. Mazur, M. V. Karpets, T. V. Khomko, T. A. Silinska, T. N. Terentyeva, L. O. Romanova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.