Chemistry, Physics and Technology of Surface, 2011, 2 (2), 147-163.

"Structure – Activity" Relationships for Interaction of Volatile Impurities with Components of Atmospheric Aerosols



V. I. Bogillo, M. S. Bazylevska

Abstract


Quantitative "structure – activity" relationships including quantum-chemical descriptors of the molecular structure are found for equilibrium partitioning of volatile impurities between components of the atmospheric aerosols and gas phase. The tendencies are found for increase in the uptake coefficient of the impurities with aerosol components, g, as the index of global electrophilicity for the impurity, w, grows. On the other hand, the g values grow as the w values calculated for the components of mineral aerosol surfaces are dropped. The obtained dependencies between g and w are related to the effect of w index for reactants on the intrinsic barrier of transformations.

Full Text:

PDF (Русский)

References


Аtmospheric Aerosol Properties and Climate Impacts. Synthesis and Assessment Product 2.3. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research / Ed. M. Chin, R.A. Kahn, S.E. Schwartz. – Washington: NASA, 2009. – 116 p.

Bian H.S., Zender C.S. Mineral dust and global troposheric chemistry: relative roles of photolysis and heterogeneous uptake // J. Geophys. Res. – 2003. – V. 108, N D21. – doi: 10.1029/2002JD003143.

Liao H., Seinfeld J.H., Adams P.J. et al. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified gene­ral circulation model // J. Geophys. Res. – 2004. – V. 109. N D16. – 207. – doi: 10.1029/2003JD3004456.

Goss K.-U., Schwarzenbach R.P. Gas/solid and gas/liquid partitioning of organic compounds: critical evaluation of the interpretation of equilibrium constants // Environ. Sci. Technol. – 1998. – V. 32, N 14. – P. 2025–2032.

Crowley J.N., Ammann M., Cox R.A. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates // Atmos. Chem. Phys. – 2010. – V. 10. – P. 9059–9223.

Bogillo V.I., Gun'ko V.M. Connection between chemisorption kinetics and adsorption equilibrium of organic compounds on oxide surfaces // Langmuir. – 1996. – V. 12, N 1. – P. 115–124.

Bogillo V.I. Kinetics of organic compounds chemisorption from gas phase on oxide surfaces // Adsorption on New and Modified Inorganic Sorbents / Ed. A. Dabrowski, V.A. Tertykh. – Amsterdam: Elsevier, 1996. – P. 135–184.

Dabrowski A., Bogillo V.I., Shkilev V.P. "Structure – activity" relationships in the adsorption and chemisorption of organic compounds on the metal oxides surface // Langmuir. – 1997. – V. 13, N 5. – P. 936–944.

Pokrovskiy V.A., Bogillo V.I., Dabrowski A. Adsorption and chemisorption of organic pollutants on the solid aerosols surface // Adsorption and its Application in Industry and Environmental Protection / Ed. A. Dabrowski. – Amsterdam: Elsevier, 1999. – P. 571–634.

Bazylevska M.S., Bogillo V.I. Description of air/surface partitioning for volatile organic pollutants in Antarctic environment // Role of Interfaces in Environmental Protection / Ed. S. Barany. – Amsterdam: Kluwer Acad. Publ., 2003. – P. 153–160.

Богилло В.И. Адсорбционные равновесия летучих органических соединений на поверхности компонентов атмосферных аэрозолей // Химия, физика и технология поверхности. – 2008. – № 14. – С. 129–139.

Богилло В.И. Влияние состава минеральных аэрозолей на кинетику гетерогенного стока летучих примесей из атмосферы // Химия, физика и технология поверхности. – 2010. – Т. 1, № 1. – С. 36–47.

Schwarzenbach R.P., Gschwend P.M., Imboden D.M. Environmental Organic Chemistry. – Second Edition. – New Jersey: Wiley-Intersci. – 2003. – 1313 p.

Abraham M.H. Scales of solute hydrogen bonding: their construction and application to physicochemical and biochemical processes // Chem. Soc. Rev. – 1993. V. 22. – P. 73–83.

Dewar M.J.S., Stewart J.J.P. A new procedure for calculating molecular polarizabilities: applications using MNDO // Chem. Phys. Lett. – 1984. – V. 11, N 4–5. – P. 416–420.

Platts J.A., Butina D., Abraham M.H. et al. Estimation of molecular linear free energy relation descriptors using a group contribution approach // J. Chem. Inf. Comput. Sci. – 1999. – V. 39, N 5. – P. 835–845.

Warne M.A., Nicholson J.K. Quantitative structure-activity relationships (QSARs) in environmental research. Part II. Molecular orbital approaches to property calculation // Progr. Environ. Sci. – 2000. – V. 2, N 1. – P. 31–52.

Holmes N.S., Sodeau J.R. A study of the interaction between halomethanes and water-ice // J. Phys. Chem. A. – 1999. – V. 103, N 24. – P. 4673–4679.

Ouvrard C., Berthelot M., Laurence C. The first basicity scale of fluoro-, chloro-, bromo- and iodo-alkanes: some cross-comparisons with simple alkyl derivatives of other elements // J. Chem. Soc. Perkin Trans. 2. – 1999. – P. 1357–1362.

Ma N.L., Lau K.-C., Chien S.-H., Li W.-K. Thermochemistry of hydrochlorofluoro­methanes revisited: a theoretical study with the Gaussian-3 (G3) procedure // Chem. Phys. Lett. – 1999. – V. 311, N 3–4. – P. 275–280.

Sitaras I.E., Bakeas E.B., Siskos P.A. Gas/particle partitioning of seven volatile polycyclic aromatic hydrocarbons in a heavy traffic urban area // Sci. Total Environ. – 2004. – V. 327, N. 1–3. – P. 249–264.

Kaupp H., McLachlan M.S. Gas/particle partitioning of PCDD/Fs, PCBs, PCNs and PAHs // Chemosphere. – 1999. – V. 38, N. 14. – P. 3411–3421.

Ogura I., Masunaga S., Nakanishi J. Parameters characterizing atmospheric behaviour of PCDDs/PCDFs // Organohalogen Compd. – 2001. – V. 52. – P. 483–486.

Hung H., Blanchard P., Poole G. et al. Measurement of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Arctic air at Alert, Nunavut, Canada // Atmos. Environ. – 2002. – V. 36, N 6. – P. 1041–1050.

Liang C., Pankow J.F., Odum J.R. et al. Gas/particle partitioning of semivolatile organic compounds to model inorganic, organic, and ambient smog aerosols // Environ. Sci. Technol. – 1997. – V. 31, N 11. – P. 3086–3092.

Hippelein M., McLachlan M.S. Soil/air partitioning of semivolatile organic compounds. 1. Method development and influence of physical-chemical properties // Environ. Sci. Technol. – 1998. – V. 32. – P. 310–316.

Клопман Г. Реакционная способность и пути реакций. – Москва: Мир, 1977. – С. 63–175.

Rienstra-Kiracofe J.C., Tschumper G.S., Schaefer H.F.IIIrd et al. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations // Chem. Rev. – 2002. – V. 102, N 1. – P. 231–282.

King M.D., Canosa-Mas C.E., Wayne R.P. Frontier molecular orbital correlations for predicting rate constants between alkenes and the tropospheric oxidants NO3, OH and O3 // Phys. Chem. Chem. Phys. – 1999. – V. 1. – P. 2231–2238.

Moise T., Talukdar R.K., Frost G.J. et al. Reactive uptake of NO3 by liquid and frozen organics // J. Geophys. Res. – 2002. – V. 107, N D2. – doi: 10.1029/2001JD000334.

Hobson J.F., Atkinson R., Carter W.P.L. Organosilicon materials // Handbook Environmental Chemistry / Ed. G. Chandra. – Berlin: Springer, 1997. – P. 137–179.

Parr R.G., Szentpaly L.V., Liu S.B. Electrophilicity index // J. Am. Chem. Soc. – 1999. – V. 121. – P. 1922–1924.

Kohn W., Becke A.D., Parr R.G. Density functional theory of electronic structure // J. Phys. Chem. – 1996. – V. 100, N 31. – P. 12974–12980.

Chattaraj P.K., Giri S., Duley S. Electrophili­city equalization principle // J. Phys. Chem. Lett. – 2010. – V. 1, N 7. – P. 1064–1067.

The NIST Chemistry WebBook. NIST Standard Reference Database http://webbook.nist.gov.

Pearson R.G. Chemical Hardness. – Weinheim: Wiley-VCH, 1997. – 198 p.

Богилло В.И. Кинетика хемосорбции органических соединений из газовой фазы на поверхности кремнезема // Химия поверхности кремнезема / Под ред. А.А. Чуйко. – Ч. 2. – Киев: УкрИНТЭИ, 2001. – С. 117–216.

Michel A.E., Usher C.R., Grassian V.H. Heterogeneous and catalytic uptake of ozone on mineral oxides and dusts: a Knudsen cell investigation // Geophys. Res. Lett. – 2002. – V. 29, N. 14. – doi: 10.1029/2002GL014896.

Rogaski C.A., Golden D.M., Williams L.R. Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3 and H2SO4 // Geophys. Res. Lett. – 1997. – V. 24, N 4. – P. 381–384.

Underwood G.M., Li P., Al-Abadleh H. et al. A Knudsen cell study of the heterogeneous reactivity of nitric acid on oxide and mineral dust particles // J. Phys. Chem. A. – 2001. – V. 105, N 27. – P. 6609–6620.

Goodman A.L., Bernard E.T., Grassian V.H. Spectroscopic study of nitric acid and water adsorption on oxide particles: enhanced nitric acid uptake kinetics in the presence of adsorbed water // J. Phys. Chem. A. – 2001. – V. 105, N 26. – P. 6443–6457.

Hanisch F., Crowley J.N. The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual mineral and clay mineral components // Phys. Chem. Chem. Phys. – 2001. – V. 3. – P. 2474–2482.

Seisel S., Börensen C., Vogt R. et al. The heterogeneous reaction of HNO3 on mineral dust and γ-alumina surfaces: a combined Knudsen cell and DRIFTS study // Phys. Chem. Chem. Phys. – 2004. – V. 6. – P. 5498–5508.

Underwood G.M., Miller T.M., Grassian V.H. Transmission FT-IR and Knudsen cell study of the heterogeneous reactivity of gaseous nitrogen dioxide on mineral oxide particles // J. Phys. Chem. A. – 1999. – V. 103, N 31. – P. 6184–6190.

Tabor K., Gutzwiller L., Rossi M.J. The heterogeneous interaction of NO2 with amorphous carbon. // Geophys. Res. Lett. – 1993. – V. 20. – P. 1431–1434.

Karagulian F., Rossi M.J. The heterogeneous chemical kinetics of NO3 on atmospheric mineral dust surrogates // Phys. Chem. Chem. Phys. – 2005. – V. 7. – P. 3150–3162

Karagulian F., Santschi C., Rossi M.J. The heterogeneous chemical kinetics of N2O5 on CaCO3 and other atmospheric mineral dust surrogates // Atmos. Chem. Phys. – 2006. – V. 6. – P. 1373–1388.

Goodman A.L., Li P., Usher C.R. et al. Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles // J. Phys. Chem. A. – 2001. – V. 105, N 25. – P. 6109–6120.

Zhang X., Zhuang G., Chen J. et al. Heterogeneous reactions of sulfur dioxide on typical mineral particles // J. Phys. Chem. B. – 2006. – V. 110, N 25. – P. 12588–12596.

Wang L., Zhang F., Chen J. Carbonyl sulfide derived from catalytic oxidation of carbon disulfide over atmospheric particles // Environ. Sci. Technol. – 2001. – V. 35, N 12. – P. 2543–2547.

Suh M., Bagus P.S., Pak S. et al. Reactions of hydroxyl radicals on titania, silica, alumina, and gold surfaces // J. Phys. Chem. B. – 2000. – V. 104, N 12. – P. 2736–2742.

Li P., Perreau K.A., Covington E. et al. Hete­rogeneous reactions of volatile organic compounds on oxide particles of the most abundant crustal elements: surface reactions of acetaldehyde, acetone, and propionaldehyde on SiO2, Al2O3, Fe2O3, TiO2, and CaO // J. Geophys. Res. – 2001. – V. 106. – P. 5517–5529.

Carlos-Cuellar S., Li P., Christensen A.P. et al. Heterogeneous uptake kinetics of volatile organic compounds on oxide surfaces using a Knudsen cell reactor, adsorption of acetic acid, formaldehyde, and methanol on α‑Fe2O3, α‑Al2O3 and SiO2 // J. Phys. Chem. A. – 2003. – V. 107, N 21. – P. 4250–4261.

Al-Hosney H., Carlos-Cuellar S., Baltrusaitis J. et al. Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: a Knudsen cell reactor, FTIR and SEM study // Phys. Chem. Chem. Phys. – 2005. – V. 7. – P. 3587–3595.

Rossi M.J. Heterogeneous reactions on salts // Chem. Rev. – 2003. – V. 103, N 12. – P. 4823–4882.

Shilling J.E., Connelly B.M., Tolbert M.A. Uptake of small oxygenated organic molecules onto ammonium nitrate under upper tropospheric conditions // J. Phys. Chem. A. – 2006. – V. 110. – P. 6687–6695.

Литтл Л. Инфракрасные спектры адсорбированных молекул. – Москва: Мир, 1969. – 514 с.

Renard J.J., Calidonna S.E., Henley M.V. Fate of ammonia in the atmosphere – a review for applicability to hazardous releases // J. Hazard. Mater. – 2004. – V. 108, N 1–2. – P. 29–60.

Minerath E.C., Casale M.T., Elrod M.J. Kinetics feasibility study of alcohol sulfate esterification reactions in tropospheric aerosols // Environ. Sci. Technol. – 2008. – V. 42, N 12. – P. 4410–4415.

Minerath E.C., Schultz M.P., Elrod M.J. Kinetics of the reactions of isoprene-derived epoxides in model tropospheric aerosol solutions // Environ. Sci. Technol. – 2009. – V. 43, N 21. – P. 8133–8139.

Parks G.A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems // Chem. Rev. – 1965. – V. 65. – P. 177–198.

Lenglet M. Iono-covalent character of the metal-oxygen bonds in oxides: A comparison of experimental and theoretical data // Act. Passive Electron. Compon. – 2004. – V. 27, N 1. – P. 1–60.

Navea J.G., Shine X., Stanier C.O. et al. Heterogeneous uptake of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) onto mineral dust aerosol under variable RH conditions // Atmos. Environ. – 2009. – V. 43, N 26. – P. 4060–4069.

Noorizadeh S., Shakerzadeh E. A new scale of electronegativity based on electrophilicity index // J. Phys. Chem. A. – 2008. – V. 112, N 15. – P. 3486–3491.

Morozov I., Loukhovitskaya E., Vasiliev E. et al. Heterogeneous processes of ClO radicals on the sea salts surface // Geophys. Res. Abstr. – 2009. – V. 11. – EGU2009-13762.

Чуйко А.А., Горлов Ю.И. Химия поверхности кремнезема. Строение поверхности, активные центры, механизмы сорбции. – Киев: Наукова думка, 1992. – 247 с.

Jaramillo P., Perez P., Conteraras R. et al. Definition of a nucleophility scale // J. Phys. Chem. A. – 2006. – V. 110. – P. 8181–8187.

Reactive halogen compounds in the atmosphere // Handbook of Environmental Chemistry / Ed. P. Fabian, O. Singh. – V. 4. Part. E. – Berlin: Springer-Verlag, 1999. – 221 p.

Robinson G.N., Freedman A., Kolb C.E. et al. Decomposition of halomethanes on α‑alumina at stratospheric temperature // Geophys. Res. Lett. – 1994. – V. 21. – P. 377–380.

Marcus R.A. Electron, proton and related transfers // Faraday Discuss. Chem. Soc. – 1982. – V. 74. – P. 7–15.

Fuentealba P., David J., Guerra D. Density functional based reactivity parameters: Thermodynamic or kinetic concepts? // J. Mol. Struct. THEOCHEM. – 2010. – V. 943, N 1–3. – P. 127–137.

Chattaraj P.K., Sarkar U., Elango M. et al. Electrophilicity as a possible descriptor of the kinetic behaviour // Preprint of CERN document server – 2005. – 38 p. (http://arxiv.org/abs/physics/0509089).

Fischer H., Radom L. Factors controlling the addition of carbon-centrered radicals to alkenes // Angew. Chem. Int. Ed. – 2001. – V. 40, N 8. – P. 1340–1371.

Arnaut L.G., Formosinho S.J. Understanding chemical reactivity: the case for atom, proton and methyl transfers // Chem. Eur. J. – 2008. – V. 14, N 22. – P. 6578–6587.




Copyright (©) 2011 V. I. Bogillo, M. S. Bazylevska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.