Хімія, фізика та технологія поверхні, 2017, 8 (2), 107-119.

Властивості композитів поліетилен–вуглецеві нанотрубки



DOI: https://doi.org/10.15407/hftp08.02.107

Yu. I. Sementsov, S. N. Makhno, S. V. Zhuravsky, M. T. Kartel

Анотація


Включення вуглецевих нанотрубок (ВНТ) в матрицю поліетилену в невеликих кількостях (до 5 мас. %) призводить до немонотонної зміни ступеня кристалічності матриці та досліджених електрофізичних і термодинамічних властивостей. Поріг протікання в системах поліетилен–ВНТ, визначений за експериментальними даними електропровідності, знаходиться в межах 0.0015–0.0020 в об’ємних частках. Вміст ВНТ до 2 % підвищує температуру термоокиснювальної деструкції полімера майже на 60 °С. Вплив ВНТ на структуру та властивості композиту тим суттєвіший, чим більший ступінь деагломерації ВНТ

Ключові слова


вуглецеві нанотрубки; поліетилен; нанокомпозити; ступінь кристалічності; електропровідність; термодинамічні властивості; поріг протікання

Повний текст:

PDF

Посилання


1. Rakov E.H. Nanotubes and fullerenes: a Training manual. (Moscow: University book, Logos, 2006). [in Russian].

2. Treacy M.M.J., Ebbesen T.W., Gibson J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996. 381: 678. https://doi.org/10.1038/381678a0

3. Mykytaev A.K., Kozlov H.V., Zaykov H.E. Polymer nanocomposites: variety of structural forms and applications. (Moscow: Nauka, 2009). [in Russian].

4. Makunyn A.V., Chechenyn N.H. Polymer-nanocarbon materials for space technologies. Band 1. Synthesis and properties of nanocarbon structures: textbook. (Moscow: University book, 2011). [in Russian].

5. Hao Y., Qunfeng Z., Fei W., Weizhong Q., Guohua L. Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism. Carbon. 2003. 41(14): 2855. https://doi.org/10.1016/S0008-6223(03)00425-1

6. Wei F., Zhang Q., Qian W.-Z., Yu H., Wang Y., Luo G.-H., Xu G.-H., Wang D.-Zh. The mass production of carbon nanotubes using a nanoagglomerate fluidized bed reactor: A multiscale space–time analysis. Powder Technol. 2008. 183(1): 10. https://doi.org/10.1016/j.powtec.2007.11.025

7. Krivoruchko O.P., Maksimova N.I., Zaikovskii V.I., Salanov A.N. Study of multiwalled graphite nanotubes and filaments formation from carbonized products of polyvinyl alcohol via catalytic graphitization at 600–800 °C in nitrogen atmosphere. Carbon. 2000. 38(7): 1075. https://doi.org/10.1016/S0008-6223(99)00225-0

8. Zhao Q., Wagner H.D. Raman spectroscopy of carbon nanotube – based composites. Phil. Trans. R. Soc. Lond. A. 2004. 362(1824): 2407.

9. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Comp. Sci. Technol. 2009. 69(10): 1486. https://doi.org/10.1016/j.compscitech.2008.06.018

10. Bokobza L. Multiwall carbon nanotube elastomeric composites. A review. Polymer. 2007. 48(17): 4907. https://doi.org/10.1016/j.polymer.2007.06.046

11. Grunlan J.C., Liu L., Regev O. Weak polyelectrolyte control of carbon nanotube dispersion in water. J. Colloid Interface Sci. 2008. 317(1): 346. https://doi.org/10.1016/j.jcis.2007.08.057

12. Wang Zh., Shirley M.D., Meikle S.T., Whitby R.L.D., Mikhalovsky S.V. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon. 2009. 47(1):73. https://doi.org/10.1016/j.carbon.2008.09.038

13. Marsh D.H., Rance G.A., Zaka M.H., Whitby R.J., Khlobystov A.N. Comparison of the stability of multiwalled carbon nanotube dispersions in water. Phys. Chem. Chem. Phys. 2007. 9: 5490. https://doi.org/10.1039/b708460a

14. Ukrainian Standard: TU U 24.1-03291669-009:2009. CARBON NANOTUBES. (ISC NAS of Ukraine).

15. Melezhyk A.V., Sementsov Yu.I., Yanchenko V.V. Synthesis of thin carbon nanotubes on co-precipitated metaloxide catalysts. Russ. J. Appl. Chem. 2005. 78(6): 938.

16. Sementsov Yu.I., Melezhyk O.V., Prikhod'ko G.P. et al. Synthesis, structure, physico-chemical properties of nanocarbon materials. Physical chemistry on nanomaterials and supramolecular structures. (Kyiv: Naukova dumka, 2007). [in Russian].

17. Ovcharenko M.S. Ph.D. Thesis. (Sumy, 2011). [in Ukrainian].

18. Sementsov Yu.I., Prykhod'ko H.P., Kartel M.T., Makhno S.M., Hrabovs'kyy Yu.Ye., Alyeksyeyev O.M., Pinchuk-Ruhal T.M. Composites polypropylene – carbon nanotubes: structural features, physico-chemical properties. Poverkhnya (Surface). 2012. 4: 203. [in Ukrainian].

19. Sementsov Yu.I., Melezhyk A.V., Pyatkovsky M.L. et al. Properties of PTFE-MWNT Composite Materials. Hydrogen Materials Science and Chemistry of Carbon Na-nomaterials. NATO Security through Science. Series A: Chemistry and biology. Springer Science + Bussines Media. 2007. 757.

20. Minus M.L., Chae H.G., Kumar S. Polyethylene Crystallization Nucleated by Carbon Nanotubes under Shear. ACS Appl. Mater. Interfaces. 2012. 4(1): 326. https://doi.org/10.1021/am2013757

21. Xu Y., Ray G., Abdel-Magid B. Thermal behavior of single-walled carbon nanotube polymer matrix composites. Composites Part A. 2006. 37(1): 114. https://doi.org/10.1016/j.compositesa.2005.04.009

22. Bakshi S.R., Tercero J.E., Agarwal A. Synthesis and characterization of multiwalled carbon nanotube reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique. Composites Part A. 2007. 38(12): 2493. https://doi.org/10.1016/j.compositesa.2007.08.004

23. Mc Nally T., Potschke P., Halley P., Murphyc M., Martinc D., Belld S.E.J., Brennane G.P., Beinf D., Lemoineg P., Quinn J.P.Polyethylene multiwalled carbon nanotube composites. Polymer. 2005. 46(19): 8222. https://doi.org/10.1016/j.polymer.2005.06.094

24. Novak D.S., Bereznenko N.M., Shostak T.S. Strumipriva on the nanocomposites of polyethylene. Rock destruction and metal-working tools – technology of manufacture and applications. Collection of scientific papers. The ISM NAS of Ukraine. 2011.14: 394. [in Russian].

25. Lisunova M.O., Mamunya Ye.P., Lebovka N.I., Melezhyk A.V. Percolation behaviour of ultrayigh molecular weight polyethylene/ multi-walled carbon nanotubes composites. Eur. Polym. J. 2007. 43(3): 949. https://doi.org/10.1016/j.eurpolymj.2006.12.015

26. Kovalska E.O., Sementsov Yu.I. Carbon nanotubes deagglomeration in aqueous solutions. Nanomaterials Imaging Techniques, Surface Studies, and Applications. (New York: Springer Science+Bussines Media, 2013). https://doi.org/10.1007/978-1-4614-7675-7_5

27. Chmutin I.A., Letyagin S.V., Shevchenko V.G. Conductive polymer composites: structure, contact phenomena, anisotropy. Polym. Sci. 1994. 36(4): 699. [in Russian].

28. Shevchenko V.H., Ponomarenko A.T. Transport processes in electrically conducting particulate-filled polymer composites. Russ. Chem. Rev. 1983. 52(8): 1336. [in Russian]. https://doi.org/10.1070/RC1983v052n08ABEH002881

29. Smith L.N. Percolation in two-dimensional conductor-insulator networks with controllable anisotropy. Phys. Rev. B. 1979. 20(9): 3653. https://doi.org/10.1103/PhysRevB.20.3653

30. Ziman J.Z.M. Models of disorder: the theoretical physics of homogeneously disordered systems. (New York: Cambridge University Press, 1979).

31. Efros A. L. Physics and geometry of disorder. (Moscow: Nauka, 1982). [in Russian].

32. Charlaix E., Guyon E., Rivier N. A criterion for percolation thresold in a random array of plates. Solid. State Commun. 1984. 50(11): 999. https://doi.org/10.1016/0038-1098(84)90274-6

33. Mamunya Ye.P. Electrical and thermal conductivity of polymer composites with dispersed fillers. Ukrainian Chemistry Journal. 2000. 66(3): 55. [in Ukrainian].

34. Quivy A., Deltour R., Jasen A.G., Wyder P. Transport phenomena in polymer-graphite composite materials. Phys. Rev. B. 1989. 39(2): 1026. https://doi.org/10.1103/PhysRevB.39.1026

35. Balberg I., Binenbaum N., Bozovsky S. Anisotropic percolation in carbon black – polyvinylchloride composites. Solid. State Commun. 1983. 47(12): 989. https://doi.org/10.1016/0038-1098(83)90984-5

36. Bocchini S., Frache A., Camino G., Claes M. Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur. Polym. J. 2007. 43(8): 3222. https://doi.org/10.1016/j.eurpolymj.2007.05.012

37. Tryfonov S.A., Sosnov E.A, Malygin A.A. Chemical transformations and thermo-oxidative resistance of polyethylene with a phosphorus – and anadyomene nanostructures on a surface. Izvestia Russian State Pedagogical A.I. Herzen Institute. 2005. 5(13): 219. [in Russian].

38. Sokolov Y.A., Shubanov S.M., Kandyrin L.B., Kalugin E.V. Polymer nanocomposites. Structures. Properties. Plastics. 2009. 3: 18.




DOI: https://doi.org/10.15407/hftp08.02.107

Copyright (©) 2017 Yu. I. Sementsov, S. N. Makhno, S. V. Zhuravsky, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.