Частоти нормальних коливань кисню на поверхні силіцію (111)
DOI: https://doi.org/10.15407/hftp05.01.010
Анотація
Ключові слова
Посилання
1. Sze S.M. Physics of Semiconductir Devices. (New York: Wiley, 1981).
2. Babich V.M., Bletskan M.I., Venger E.F. Oxygen in Silicon Monocrystals. (Kyiv: Interpress Ltd, 1997). [in Russian].
3. Czochralski J. Ein neues Verfahren zur Messung der Kritallizationsgeschwindigkeit der Metalle. J. Phys. Chem.1917. 2: 219.
4. Pfann V.D. Zone melting. (Moscow: Metallurgiya, 1960). [in Russian].
5. Protasov Yu.S., Chuvashev S.N. Solid State Electronics. (Moscow: Bauman MGTU Publ., 2003). [in Russian].
6. Goss A.J., Adlington R.E. Seed rotation influence on silicon crystal growth. Marconi Rev. 1959. 22: 18.
7. Nikitin V.M., Turovsky B.I., Meldivsky M.G. Some problems of semiconducting silicon metallurgy. Nauchnyye trudy Giredmeta. 1969. 25: 82. [in Russian].
8. Fan X.L., Zhang Y.F., Lau W.M., Liu Z.F. Adsorption of triplet O2 on Si(100): the crucial step in the initial oxidation of a silicon surface. Phys. Rev. Lett. 2005. 94(1): 016101. https://doi.org/10.1103/PhysRevLett.94.016101
9. Batra I.P., Bagus P.S., Herman K. Chemisorption of atomic oxygen on Si (100): self-consistent cluster and slab model investigations. Phys. Rev. Lett. 1984. 52(5): 384. https://doi.org/10.1103/PhysRevLett.52.384
10. Vasiliev I., Chelikowsky J.R., Martin R.M. Surface oxidation effects on the optical properties of silicon nanocrystals. Phys. Rev. B. 2002. 65: 121302. https://doi.org/10.1103/PhysRevB.65.121302
11. Gurvich L.V., Karachevtsev G.V., Kondratiev V.N., Medvedev V., Vedeneev V., Frankevich Ye., Lebedev Yu., Potapov V., Hodeev Yu. Rupture energies of chemical bonds. Ionization potentials and electron affinities. (Moscow: Nauka, 1974). [in Russian].
12. Chuiko A.A., Gorlov Yu.I. Chemistry of Silica Surface: Surface Structure, Active Sites, Sorption Mechanisms. (Kyiv: Naukova dumka, 1992). [in Russian].
13. Terebinskaya M.I., Lobanov V.V. Oxidation of the (100) face of crystalline silicon. Theor. Exp. Chem. 2007. 43(4): 278. https://doi.org/10.1007/s11237-007-0034-y
14. Terebinskaya M.I., Lobanov V.V. Formation mechanism for supramolecular oxygen structures on the (111) face of crystalline silicon. Physico-chemistry of Nanomaterials and Supramolecular Structures. (Kyiv: Naukova dumka, 2007). 2: 82.
15. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki Sh., Matsunaga Nguyen K.A., Su Sh., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic-structure system: Review. J. Comput. Chem. 1993. 14(11): 1347 https://doi.org/10.1002/jcc.540141112
16. Ilyiin M.A., Kovarsky V.Ya., Orlov A.F. Determination of the oxygen and carbon content in silicon by optical method. Zavodskaya Laboratoriya. 1984. 50: 24. [in Russian].
17. Hrostowski H.J., Kaiser R.H. Infrared adsorption of oxygen in silicon. Phys. Rev. 1957. 107: 966. https://doi.org/10.1103/PhysRev.107.966
18. Chenco R.M., McDonald R.S., Pell E.M. Vibrational spectra of lithium-oxygen and lithium-boron complexes in silicon. Phys. Rev. 1965. 138: A1775. https://doi.org/10.1103/PhysRev.138.A1775
19. Bosomworth D.R., Hayes W., Spray A.R.L., Watkins G.D. Absorption of oxygen in silicon in the near and the far infrared. Proc. Royal Soc. London A. 1970. 317(1528): 133. https://doi.org/10.1098/rspa.1970.0107
20. O'Mara W.C., Herring R.B., Hunt L.P. Handbook of Semiconductor Silicon Technology. (Bracknell, Berkshire, UK: Noyes Publications, 1990).
DOI: https://doi.org/10.15407/hftp05.01.010
Copyright (©) 2014 M. I. Terebinska, V. V. Lobanov, A. G. Grebenyuk
This work is licensed under a Creative Commons Attribution 4.0 International License.