Хімія, фізика та технологія поверхні, 2017, 8 (4), 422-431.

Катіон-вмісне активоване вугілля як фотокаталізатори деградації барвників



DOI: https://doi.org/10.15407/hftp08.04.422

V. V. Sydorchuk, S. V. Khalameida, O. I. Poddubnaya, M. M. Tsyba, A. M. Puziy

Анотація


Окиснене вугілля та його катіонообмінні форми використані як фотокаталізатори в процесах деградації барвників (родамін Б, метилоранж) та фенолу під дією УФ та видимого світла. Встановлено, що вихідне окиснене вугілля є активним в умовах УФ опромінення, але неактивне у видимій області. Введення в активоване вугілля добавок міді та кобальту сприяє значному збільшенню фотокаталітичної активності отриманих каталізаторів. Мідь-вмісне вугілля є найактивнішим в УФ області, а кобальт-вмісне – у видимій області. Ступінь знебарвлення розчинів барвників досягає 90–95 %, а ступінь їх мінералізації складає 16–73 %.


Ключові слова


активоване вугілля; катіонообмінні форми; фотокаталітична деградація; УФ- та видиме випромінювання; знебарвлення та мінералізація

Повний текст:

PDF (English)

Посилання


1. Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon. 1998. 36(3): 159. https://doi.org/10.1016/S0008-6223(97)00173-5

2. Trogadas P., Fuller T.F., Strasser P. Carbon as catalyst and support for electrochemical energy conversion. Carbon. 2014. 75: 5. https://doi.org/10.1016/j.carbon.2014.04.005

3. Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon. 2004. 42(1): 83. https://doi.org/10.1016/j.carbon.2003.09.022

4. Radovic L.R., Moreno-Castilla C., Rivera-Utrilla J. Carbon materials as adsorbents in aqueous solutions. Chemistry and Physics of Carbon. V. 27. (New York: Marcel Dekker, Inc., 2000).

5. Tarkovskaya I.A. Oxidized carbon. (Kiev: Naukova dumka, 1981). [in Russian].

6. Moreno-Castilla C., Alvarez-Merino M.A., López-Ramón M.V., Rivera-Utrilla J. Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter. Langmuir. 2004. 20(19): 8142. https://doi.org/10.1021/la049253m

7. Bagheri S., Julkapli N.M., Abd Hamid S.B. Functionalized activated carbon derived from biomass for photocatalysis applications perspective. Int. J. Photoenergy. 2015. 2015: Article ID 218743.

8. Wang J., Ng Y.H., Lim Y.-F., Ho G.W. Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H2 production. RSC Adv. 2014. 4(83): 44117. https://doi.org/10.1039/C4RA07290A

9. Lu S., Panchapakesan B. Photoconductivity in single wall carbon nanotube sheets. Nanotechnology. 2006. 17(8): 1843. https://doi.org/10.1088/0957-4484/17/8/006

10. Haro M., Velasco L.F., Ania C.O. Carbon-mediated photoinduced reactions as a key factor in the photocatalytic performance of C/TiO2. Catal. Sci. Technol. 2012. 2(11): 2264. https://doi.org/10.1039/c2cy20270k

11. An G., Ma W., Sun Z., Liu Z., Han B., Miao S., Miao, Z., Ding, K. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity. Carbon. 2009. 45(9): 1795. https://doi.org/10.1016/j.carbon.2007.04.034

12. Oh Y.J., Kim S., Lee I.H., Lee J., Chang K.J. Direct band gap carbon superlattices with efficient optical transition. Phys. Rev. B. 2016. 93(8): 1. https://doi.org/10.1103/PhysRevB.93.085201

13. Klimm D. Electronic materials with a wide band gap: recent developments. Int. Union Crystallogr. J. 2014. 1(Pt 5): 281. https://doi.org/10.1107/S2052252514017229

14. Jeong H.K., Yang C., Kim B. S., Kim Ki-J. Valence band of graphite oxide. Europhys. Lett. 2010. 92(3): 37005. https://doi.org/10.1209/0295-5075/92/37005

15. Bustos-Ramírez K., Barrera-Díaz C.E., Icaza-Herrera M.De., Martínez-Hernández A.L., Natividad-Rangel R., Velasco-Santo C. 4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts. J. Environ. Health. Sci. Eng. 2015. 13: 33. https://doi.org/10.1186/s40201-015-0184-0

16. Velasco-Soto M.A., Pérez-García S.A., Alvarez-Quintana J., Cao Y., Nyborg L., Licea-Jiménez L. Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon. 2015. 93: 967. https://doi.org/10.1016/j.carbon.2015.06.013

17. Yeh Te-Fu, Syu J.-M., Cheng C., Chang T.-H., Teng H. Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Adv. Funct. Mater. 2010. 20(14): 2255. https://doi.org/10.1002/adfm.201000274

18. Xiang Q., Yu J., Jaroniec M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012. 41(2): 782. https://doi.org/10.1039/C1CS15172J

19. Bandosz T.J., Matos J., Seredych M., Islam M.S.Z., Alfano R. Photoactivity of S-doped nanoporous activated carbons: A new perspective for harvesting solar energy on carbon-based semiconductors. Appl. Catal. A. 2012. 445–446: 159. https://doi.org/10.1016/j.apcata.2012.08.020

20. Strelko V.V., Kartel N.T., Dukhno I.N., Kuts V.S., Clarkson R.B., Odintsov B.M. Mechanism of reductive oxygen adsorption on active carbons with various surface chemistry. Surf. Sci. 2004. 548(1–3): 281. https://doi.org/10.1016/j.susc.2003.11.012

21. Velo-Gala I., López-Pe-alver J.J., Sánchez-Polo M., Rivera-Utrilla J. Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal. B. 2013. 142–143: 694. https://doi.org/10.1016/j.apcatb.2013.06.003

22. Velasco L.F., Fonseca I.M., Parra J.B., Lima J.C., Ania C.O. Photochemical behaviour of activated carbons under UV irradiation. Carbon. 2012. 50(1): 249. https://doi.org/10.1016/j.carbon.2011.08.042

23. Velasco L.F., Maurino V., Laurenti E., Fonseca I.M., Lima J.C., Ania C.O. Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Appl. Catal. A. 2013. 452: 1. https://doi.org/10.1016/j.apcata.2012.11.033

24. Gor G.Y., Thommes M., Cychosz K.A., Neimark A.V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon. 2012. 50(4): 1583. https://doi.org/10.1016/j.carbon.2011.11.037

25. Landers J., Gor G.Y., Neimark A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A. 2013. 437: 3. https://doi.org/10.1016/j.colsurfa.2013.01.007

26. Neimark A.V., Lin Y., Ravikovitch P.I., Thommes M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon. 2009. 47(7): 1617. https://doi.org/10.1016/j.carbon.2009.01.050

27. Rouquerol J., Llewellyn P., Rouquerol F. Is the BET equation applicable to microporous adsorbents? In: COPS-7: Characterization of Porous Solids VII. V. 160. (Amsterdam: Elsevier, Studies in Surface Science and Catalysis, 2007). https://doi.org/10.1016/S0167-2991(07)80008-5

28. Lützenkirchen J., Preočanin T., Kovačević D., Tomišić V., Lövgren L., Kallay N. Potentiometric titrations as a tool for surface charge determination. Croat. Chem. Acta. 2012. 85(4): 391. https://doi.org/10.5562/cca2062

29. Puziy A.M., Poddubnaya O.I., Ritter J.A., Ebner A.D., Holland C.E. Elucidation of the ion binding mechanism in heterogeneous carbon-composite adsorbents. Carbon. 2001. 39(15): 2313. https://doi.org/10.1016/S0008-6223(01)00048-3

30. Puziy A.M., Kochkin Y.N., Poddubnaya O.I., Tsyba M.M. Ethyl tert-butyl ether synthesis using carbon catalysts from lignocellulose. Adsorpt. Sci. Technol. 2017. 35(5–6): 473. https://doi.org/10.1177/0263617417696091

31. Myglovets M., Poddubnaya O.I., Sevastyanova O., Lindström M.E., Gawdzik B., Sobiesiak M., Tsyba M.M., Sapsay V.I., Klymchuk D.O., Puziy A.M. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon. 2014. 80: 771. https://doi.org/10.1016/j.carbon.2014.09.032

32. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015. 87(9–10): 1051. https://doi.org/10.1515/pac-2014-1117

33. Kapinus E., Viktorova T., Khalyavka T. Dependence of the rate of photocatalytic decomposition of safranine on the catalyst concentration. Theor. Exp. Chem. 2009. 45(2): 114. https://doi.org/10.1007/s11237-009-9071-z

34. Gupta V.K., Jain R., Mittal A., Mathur M., Sikarwar S. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Colloid Interface Sci. 2007. 309(2): 464. https://doi.org/10.1016/j.jcis.2006.12.010

35. Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009. 151(1–3): 10. https://doi.org/10.1016/j.cej.2009.02.026

36. Zhu Z.F., Zhou J.Q., Wang X.F., He Z.L., Liu H. Effect of pH on photocatalytic activity of SnO2 microspheres via microwave solvothermal route. Mater. Res. Innovations. 2014. 18(1): 8. https://doi.org/10.1179/1433075X12Y.0000000043

37. Sangami G., Dharmaraj N. UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012. 97: 847. https://doi.org/10.1016/j.saa.2012.07.068

38. Merka O., Yarovyi V., Bahnemann D.W., Wark M. pH-control of the photocatalytic degradation mechanism of Rhodamine B over Pb3Nb4O13. J. Phys. Chem. C. 2011. 115(16): 8014. https://doi.org/10.1021/jp108637r

39. Sydorchuk V.V., Khalameida S.V., Zazhigalov V.O., Khanina O.A. Photocatalytic degradation of dyes in the presence of mechanochemically modified vanadium and molybdenum oxides. Him. Fiz. Tehnol. Poverhni. 2013. 4(3): 266. [in Ukrainian].

40. Wu T., Liu G., Zhao J. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B. 1998. 102(30): 5845. https://doi.org/10.1021/jp980922c

41. Khalameida S., Samsonenko M., Sydorchuk V., Starchevskyy V., Zakutevskyy O., Khyzhun O. Synthesis, physical-chemical properties of tin dioxide doped with chromium(III), silver, zinc compounds and photodegradation of some substrates with its use under visible light. Theor. Exp. Chem. 2017. 53(1): 40. https://doi.org/10.1007/s11237-017-9499-5

42. Matzner S., Boehm H.P. Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons. Carbon.1998. 36(11): 1697. https://doi.org/10.1016/S0008-6223(98)90047-1

43. Strelko V.V., Kutz V.S., Thrower P.A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon. 2000. 38(10): 1453. https://doi.org/10.1016/S0008-6223(00)00121-4

44. Hayyan M., Hashim M.A., Alnashef I.M. Superoxide ion: generation and chemical implications. Chem. Rev. 2016. 116(5): 3029. https://doi.org/10.1021/acs.chemrev.5b00407




DOI: https://doi.org/10.15407/hftp08.04.422

Copyright (©) 2017 V. V. Sydorchuk, S. V. Khalameida, O. I. Poddubnaya, M. M. Tsyba, A. M. Puziy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.