Хімія, фізика та технологія поверхні, 2018, 9 (3), 289-300.

Каталітичне розкладання органічних пероксидів в неводному середовищі нанопоруватими та нанорозмірними вуглецевими матеріалами



DOI: https://doi.org/10.15407/hftp09.03.289

K. V. Voitko, O. M. Bakalinska, M. T. Kartel

Анотація


Метою роботи є дослідження каталітичної системи “Вуглецевий наноматеріал – молекули діацил пероксиду у неводному середовищі” та встановлення основних факторів, що впливають на каталітичну активність обраних матеріалів. Досліджено каталітичну активність нанопоруватих (активованого вугілля (AВ)) та нанорозмірних (багатошарових вуглецевих нанотрубок (ВНТ)) вуглецевих каталізаторів та їхніх модифікованих форм в реакції розкладання пероксидів бензоїлу та лаурилу (ПБ та ПЛ відповідно) при кімнатній температурі у неводному середовищі шляхом вимірювання об’єму CO2, що виділяється. Оскільки розкладання пероксидів залежить від розчинника, вибір «інертного» зроблено за результатами попередніх досліджень. Етилацетат та тетрахлорметан було використано для ПБ та ПЛ, відповідно. Серед факторів, що визначають каталітичну ефективність досліджуваних зразків були розглянуті їхні структурно-сорбційні властивості, хімія поверхні та дифузійні параметри перебігу реакцій. Встановлено, що незважаючи на високу площу поверхні, зразки АВ виявляють помірну каталітичну активність у порівнянні з ВНТ, оскільки реакція проходить у внутрішньодифузійній області. Як наслідок, їхня активність визначається текстурними характеристиками вуглецевої матриці. Каталітична активність зразків ВНТ перевищує активність АВ в 2–20 разів. Ґрунтуючись на розрахованих коефіцієнтах дифузії, було зроблено висновок, що каталіз зразками ВНТ проходить в кінетичній області на доступній поверхні зразків. Така каталітично активна поверхня містить багато N-вмісних та основних О-вмісних функціональних груп, тому демонструє кращу каталітичну активність щодо розкладання органічних пероксидів. Крім того, поверхня ВНТ більш гідрофобна, що сприяє реакції, яка проходить у неводних середовищах. Слід зазначити, що швидкість розкладання стеричного ПБ нижча, ніж довголанцюгового ПЛ, як у випадку прискорення зразками АВ, так і ВНТ. На основі проведених досліджень можна передбачити, що мезопоруваті ВНТ з високим вмістом основних функціональних груп, що знаходяться на доступній для субстрату поверхні, можуть бути гарною альтернативою поширеним каталізаторам розкладання органічних пероксидів в неводних середовищах.


Ключові слова


ативоване вугілля; вуглецеві нанотрубки; бензоїл пероксид; лаурил пероксид; дифузія; структурно-сорбційні характеристики; хімія поверхні

Повний текст:

PDF (English)

Посилання


1. Serp P., Machado B. Nanostructured Carbon Materials for Catalysis. (Cambridge: The Royal Society of Chemistry, 2015).

2. Dreyer R.D., Bielawski C.W. Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2011. 2: 1233. https://doi.org/10.1039/c1sc00035g

3. Figueiredo J.L., Pereira M.F.R. Carbon Materials for Catalysis. (NY: John Wiley & Sons, 2009).

4. Hermenegildo G. Allotropic carbon nanoforms as advanced metal-free catalysts or as supports. Adv. Chem. 2014. 2014: ID 906781.

5. Yu H., Peng F., Tan J., Hu X., Wang H., Yang J., Zheng W. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes. Angew. Chem. Int. Ed. 2011. 50(17): 3978. https://doi.org/10.1002/anie.201007932

6. Bégin D., Ulrich G., Amadou J., Su D.S., Pham-Huu C., Ziessel R. Oxidative dehydrogenation of 9,10-dihydroanthracene using multi-walled carbon nanotubes. J. Mol. Catal. A. 2009. 302(1–2): 119. https://doi.org/10.1016/j.molcata.2008.12.006

7. Chua C.K., Pumera M. Carbocatalysis: The state of "metal–free" catalysis. Chem. Eur. J. 2015. 21(36): 12550. https://doi.org/10.1002/chem.201501383

8. Navalon S., Dhakshinamoorthy A., Alvaro M., Garcia H. Carbocatalysis by graphene-based materials. Chem. Rev. 2014. 114(12): 6179. https://doi.org/10.1021/cr4007347

9. Su C., Loh K.P. Carbocatalysts: graphene oxide and its derivatives. Acc. Chem. Res. 2013. 46(10): 2275. https://doi.org/10.1021/ar300118v

10. Shi Y., Gan L., Wei X., Jin S., Zhang S., Meng F., Wang Z., Yan C. Fullerene-sensitized. Org. Lett. 2000. 2(5): 667. https://doi.org/10.1021/ol005503o

11. Pacosová L., Kartusch C., Kukula P., Bokhoven J.A. Is fullerene a nonmetal catalyst in the hydrogenation of nitrobenzene. Chem. Cat. Chem. 2011. 3(1): 1541. https://doi.org/10.1002/cctc.201000229

12. Oliveira L.C.A., Silva C.N., Yoshida M.I., Lago R.M. The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon. 2004. 42(11): 2279. https://doi.org/10.1016/j.carbon.2004.05.003

13. Khalil L.B., Girgis B.S., Tawfik T.A. Decomposition of H2O2 on activated carbon obtained from olive stones. J. Chem. Technol. Biothechnol. 2001. 76(11): 1132. https://doi.org/10.1002/jctb.481

14. Voitko K., Whitby R.L.D., Gun'ko V., Bakalinska O.M., Kartel M.T., Laszlo K., Cundy A.B., Mikhalovsky S.V. Morphological and chemical features of nano and macroscale carbons affecting hydrogen peroxide decomposition in aqueous media. J. Colloid Interface Sci. 2011. 361(1): 129. https://doi.org/10.1016/j.jcis.2011.05.048

15. Sun C., Yan G., Lin X., Ma S., Li Z. Theoretical studies on thermal decomposition of benzoyl peroxide in ground state. Chem. Res. Chinese Univer. 2003. 19: 355.

16. Ying Y., Saini R.K., Liang F., Sadana A.K., Billups W.E. Functionalization of carbon nanotubes by free radicals. Org. Lett. 2003. 5(9): 1471. https://doi.org/10.1021/ol0342453

17. Walling C., Waits H.P., Milovanovic J., Pappiaonnou C.G. Polar and radical paths in the decomposition of diacyl peroxides. J. Am. Chem. Soc. 1970. 92(16): 4927. https://doi.org/10.1021/ja00719a028

18. Lyavinets A.S. Kinetic features of decomposition of benzoyl peroxide in superbasic media. Rus. J. Gen. Chem. 2005. 75(5): 759. https://doi.org/10.1007/s11176-005-0314-y

19. Smith W.F., Rossiter B.W. Induced decomposition of benzoyl peroxide by the benzophenone ketyl radical. Tetrahedron. 1969. 25(10): 2059. https://doi.org/10.1016/S0040-4020(01)82757-5

20. Hasegawa S., Nishimura N. Studies on organic peroxides. V. Decomposition of benzoyl peroxide by iron(II). Bull. Chem. Soc. Jap. 1960. 33(6): 775. https://doi.org/10.1246/bcsj.33.775

21. Kochi J.K. The Decomposition of peroxides catalyzed by copper compounds and the oxidation of alkyl radicals by cupric salts. J. Am. Chem. Soc. 1963. 85(13): 1958. https://doi.org/10.1021/ja00896a014

22. Yoshida M., Morinaga Y., Iyoda M., Kikuchi K., Ikemoto I., Achiba Y. Reaction of C60 with diacyl peroxides containing perfluoroalkyl groups. The first example of electron transfer reaction via C60+·in solution. Tetrahedron Lett. 1993. 34(47): 7629. https://doi.org/10.1016/S0040-4039(00)60418-5

23. Engel P.S., Billups W.E., Abmayr D.W., Tsvaygboym K., Wang R. Reaction of single-walled carbon nanotubes with organic peroxides. J. Phys. Chem. C. 2008. 112(3): 695. https://doi.org/10.1021/jp0770054

24. Peng H., Reverdy P., Khabashesku V.N., Margrave J.L. Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem. Commun. 2003. 3: 362. https://doi.org/10.1039/b209456h

25. Brichka S.Y., Prikhod'ko G.P., Sementsov Y.I., Brichka A.V., Dovbeshko G.I., Paschuk O.P. Synthesis of carbon nanotubes from a chlorine-containing precursor and their properties. Carbon. 2004. 42(12–13): 2581. https://doi.org/10.1016/j.carbon.2004.05.040

26. Wang Z., Shirley M.D., Meikle S.T., Whitby R.L.D., Mikhalovsky S. The surface acidity of acid oxidized multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon. 2009. 47(1): 73. https://doi.org/10.1016/j.carbon.2008.09.038

27. Boehm H.P. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002. 40(2): 145. https://doi.org/10.1016/S0008-6223(01)00165-8

28. Briggs D., Search M.P. Practical Surface Analysis. (Chichester: Wiley, 1992).

29. Voitko K.V., Haliarnyk D.M., Bakalinska O.M., Kartel M.T. Factors determining the catalytic activity of multi-walled carbon nanotubes in the decomposition of diacyl peroxides in non-aqueous media. Catal Lett. 2017. 147(8): 1966. https://doi.org/10.1007/s10562-017-2110-9

30. Toth A., Voitko K.V., Bakalinska O., Prykhod'ko G.P., Bertoti I., Martinez-Alonso A., Tascon J.M.D., Gun'ko V.M., Laszlo K. Morphology and adsorption properties of chemically modified MWCNT probed by nitrogen, n-propane and water vapour. Carbon. 2012. 50(2): 577. https://doi.org/10.1016/j.carbon.2011.09.016

31. Chu H., Qiu S., Liu L., Zou Y., Xiang C., Zhang H., Xu F., Sun L., Zhou H., Wu G. Significantly enhanced dehydrogenation properties of calcium borohydride combined with urea. Dalton Trans. 2014. 43(41): 15291. https://doi.org/10.1039/C4DT01355G

32. Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., Órfão J.J.M. Modification of the surface chemistry of activated carbons. Carbon. 1999. 37(9): 1379. https://doi.org/10.1016/S0008-6223(98)00333-9

33. Rocha R.P., Sousa J.P.S., Silva A.M.T., Pereira M.F.R., Figueiredo J.L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Appl. Catal., B. 2011. 104(3–4): 330. https://doi.org/10.1016/j.apcatb.2011.03.009

34. Pels R., Kapteijn F., Moulijn J.A., Zhu Q., Thomas K.M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon. 1995. 33(11): 1641. https://doi.org/10.1016/0008-6223(95)00154-6

35. Rodil S.E., Muhl S. Bonding in amorphous carbon nitride. Diamond Relat. Mater. 2004. 13(4–8): 1521. https://doi.org/10.1016/j.diamond.2003.11.008

36. Lin Y.C., Chiu P.W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010. 96(13): 133110. https://doi.org/10.1063/1.3368697

37. Gill G.B., Williams G.H. Aroyl peroxides. Part IV. The decomposition of benzoyl peroxide in nitrobenzene. The effect of added nitrobenzene on the decomposition of benzoyl peroxide in benzene. J. Chem. Soc. B. 1966. 0: 880. https://doi.org/10.1039/j29660000880

38. Pobedimskii D.G. Kinetics and mechanism of the reaction of peroxy-compounds with phosphites, sulphides, and aromatic amines. Russ. Chem. Rev. 1971. 40(2): 142. https://doi.org/10.1070/RC1971v040n02ABEH001901

39. Morsi S.E., Zaki A.B., El-Shamy T.M., Habib A. The role of charge transfer interactions in the decomposition of organic peroxides—I: Benzoyl peroxide-amine systems in non-restricted fluid media. Eur. Polym. J. 1976. 12: 417. https://doi.org/10.1016/0014-3057(76)90089-6

40. Morsi S.E., Zaki A.B., El-Khyami L.A. The role of charge transfer interactions in the decomposition of organic peroxides–II: Spontaneous and amine-induced decomposition of dibenzoyl peroxide in partially restricted media. Eur. Polym. J. 1977. 13(11): 851. https://doi.org/10.1016/0014-3057(77)90054-4




DOI: https://doi.org/10.15407/hftp09.03.289

Copyright (©) 2018 K. V. Voitko, O. M. Bakalinska, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.