Триєдність «електрод–ізолюючий поліфункціональний шар–електроліт» – підґрунтя для використання конверсійних типів реакцій у літій–іонних акумуляторах
DOI: https://doi.org/10.15407/hftp12.03.226
Анотація
Вирішенням проблеми негативного впливу на екологію споживання викопного палива є застосування електрохімічних джерел енергії. Висвітлена особлива привабливість літієвих джерел струму та показана необхідность розробки нових дешевих електродних матеріалів й електролітів з унікальними властивостями. Розглянуто особливості поведінки літію та формування на його поверхні при контакті з рідким органічним електролітом шару продуктів реакцій. Проведено аналіз основних проблем та шляхів їхнього вирішення при використанні конверсійних електродів ІІ типу для літій–іонних акумуляторів. Наголошено на необхідності використання при розробці нових електродних матеріалів таких параметрів, як навантажувальна та накопичена необоротні ємності електродів. Тріада «електрод – ізолюючий поліфункціональний шар – електроліт» розглядається як засади системного підходу до створення нових поколінь літієвих джерел струму. Запропоновані оптимальні сценарії формування ефективного ізолюючого поліфункціонального шару на поверхні електродів при контакті з електролітом. Описані переваги електролітів на основі фторетиленкарбонату із сінергічно діючими добавками вініленкарбонату та етиленсульфіту. Розглянута нова стратегія застосування «вторинних» наноматеріалів кремнію із запобіганням прямого контакту його поверхні із електролітом. Показано, що ізолюючий поліфункціональний шар є динамічною системою, що самоорганізується через нестабільний стан у стабільний. Описана електрохімічна поведінка електродів із нанокомпозитами кремнію з високою навантажувальною та низькою накопиченою необоротною ємностями.
Ключові слова
Посилання
Choi J.W., Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016. 1(4): 16013. https://doi.org/10.1038/natrevmats.2016.13
Manthiram A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017. 3(10): 1063. https://doi.org/10.1021/acscentsci.7b00288
Opitz A., Badami P., Shen L., Vignarooban K., Kannan A.M. Can Li-Ion batteries be the panacea for automotive applications? Renewable Sustainable Energy Rev. 2017. 68(1): 685. https://doi.org/10.1016/j.rser.2016.10.019
Schmuch R., Wagner R., Hörpel G., Placke T., Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy. 2018. 3(4): 267. https://doi.org/10.1038/s41560-018-0107-2
Cano Z.P., Banham D., Ye S., Hintennach A., Lu J., Fowler M., Chen Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy. 2018. 3(4): 279. https://doi.org/10.1038/s41560-018-0108-1
Zeng X., Li M., Abd El-Hady D., Alshitari W., Al-Bogami A.S., Lu J., Amine K. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv. Energy Mater. 2019. 9(27): 1. https://doi.org/10.1002/aenm.201900161
Marinaro M., Bresser D., Beyer E., Faguy P., Hosoi K., Li H., Sakovica J., Amine K., Wohlfahrt-Mehrens M., Passerini S. Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. J. Power Sources. 2020. 459: 228073. https://doi.org/10.1016/j.jpowsour.2020.228073
Maletin Yu., Stryzhakova N., Zelinskyi S., Chernukhin S., Tretyakov D., Mosqueda H., Davydenko N., Drobnyi D. New Approach to Ultracapacitor Technology: What it Can Offer to Electrified Vehicles. Journal of Power and Energy Engineering. 2015. 9(6): 585. https://doi.org/10.17265/1934-8975/2015.06.010
Maletin Yu., Stryzhakova N., Zelinskyi S., Chernukhin S., Tretyakov D., Tychina S., Drobny D. Electrochemical Double Layer Capacitors and Hybrid Devices for Green Energy. Green. 2014. 4: 9. https://doi.org/10.1515/green-2014-0002
Patent US 2014/0085773. H01G11/06. Chernukhin S., Tretyakov D., Maletin Yu. Hybrid electrochemical energy storage device. 2014.
Patent US 7,006,346 B2. HO1G 9/00, 9/145. Volfkovich Yu.M., Rychagov A.Y., Urisson N.A., Serdyuk T.M. Positive Electrode of an Electric Double Layer Capacitor. 2006.
Weppner W., Huggins R. Determination of the kinetic parameters of mixed-conducting electrodes and applications to the system Li3Sb. J. Electrochem. Soc. 1977. 124(10): 1569. https://doi.org/10.1149/1.2133112
Goodenough J.B., Kim Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010. 22(3): 587. https://doi.org/10.1021/cm901452z
Hayashi M., Arai H., Ohtsuka H., Sahurai Y. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J. Power Sources. 2003. 119-121: 617. https://doi.org/10.1016/S0378-7753(03)00307-0
Rong Z., Malik R., Canepa P., Gautam G.S., Liu M., Jain A., Persson K., Ceder G. Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures. Chem. Mater. 2015. 27: 6016. https://doi.org/10.1021/acs.chemmater.5b02342
Placke T., Kloepsch R., Dühnen S., Winter M. Lithium Ion, Lithium Metal, and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density. J. Solid State Electrochem. 2017. 21: 1939. https://doi.org/10.1007/s10008-017-3610-7
Canepa P., Gautam G.S., Hannah D.C., Malik R., Liu M., Gallagher K.G., Persson K., Ceder G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017. 117(5): 4287. https://doi.org/10.1021/acs.chemrev.6b00614
Anji R.M., Fichtner M. Batteries based on fluoride shuttle. J. Mater. Chem. 2011. 21(43): 17059. https://doi.org/10.1039/c1jm13535j
Wang F., Wu X., Li C., Zhu Y., Fu L., Wu Y., Liu X. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ Sci. 2016. 9(12): 3570. https://doi.org/10.1039/C6EE02070D
Sarma D.D., Shukla A.K. Building Better Batteries: A Travel Back in Time. ACS Energy Lett. 2018. 3(11): 2841. https://doi.org/10.1021/acsenergylett.8b01966
Goodenough J.B. Battery components, active materials for. In: Batteries for Sustainibility: Selected Entries from the Encyclopedia of Sustainibility Science and Technology. (Springer Sci.: New York, NY, USA, 2013). P. 51. https://doi.org/10.1007/978-1-4614-5791-6_3
Holmes C. The Lithium/Iodine-Polyvinylpyridine Pacemaker Battery - 35 years of Successful Clinical Use. ECS Trans. 2007. 6(5): 1. https://doi.org/10.1149/1.2790382
Goodenough J.B. Energy Storage Materials: A Perspective. Energy Storage Mater. 2015. 1: 158. https://doi.org/10.1016/j.ensm.2015.07.001
Palacin M.R., de Guibert A. Why Do Batteries Fail? Science. 2016. 351(6273): 1253292. https://doi.org/10.1126/science.1253292
Evarts E.C. To the Limits of Lithium. Nature. 2015. 526(7575): S93. https://doi.org/10.1038/526S93a
Julien C., Mauger A., Vijh A., Zaghib K. Lithium Batteries: Science and Technology. (Springer Int. Publ. Switzerland, 2016). P. 34. https://doi.org/10.1007/978-3-319-19108-9
Kuksenko S.P., Tarasenko Yu.O., Kartel M.T. a-Si@SiOC&C (2D ⸧ micro-3D) - Novel Nanocomposite for Lithium-Ion Batteries Next Generation. In: Reporting scientific session on the projects of the target program of scientific researches of the NAS of Ukraine "New functional substances and materials of chemical production". (Kyiv, IPhCh NAS Ukraine, 14 December 2017). Abstracts. P. 31. [in Ukrainian].
Kuksenko S.P., Kaleniuk H.O., Tarasenko Yu.O., Kartel M.T. Stable silicon electrodes with polyvinilidenfluoride-binder for lithium-ion batteries. Him. Fiz. Tehnol. Poverhn. 2020. 11(1): 58 [in Ukrainian]. https://doi.org/10.15407/hftp11.01.058
Kang B., Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009. 458(7235): 190. https://doi.org/10.1038/nature07853
Scrosati B., Garche J. Lithium batteries: Status, prospects and future. J. Power Sources. 2010. 195(9): 2419. https://doi.org/10.1016/j.jpowsour.2009.11.048
Janek J., Zeier W.G. A Solid Future for Battery Development. Nat. Energy. 2016. 1: 16141. https://doi.org/10.1038/nenergy.2016.141
Qian J., Adams B.D., Zheng J., Xu W., Henderson W.A., Wang J., Bowden M.E., Xu S., Hu J., Zhang J.-G. Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater. 2016. 26(39): 7094. https://doi.org/10.1002/adfm.201602353
Tian Y., An Y., Wei C., Jiang H., Xiong S., Feng J., Zhou J. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy. 2020. 78: 105344. https://doi.org/10.1016/j.nanoen.2020.105344
Nanda S., Gupta A., Manthiram A. Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Adv. Energy Mater. 2020. 11(2): 200804. https://doi.org/10.1002/aenm.202000804
https://www.marketwatch.com/press-release/lithium-ion-battery-market-is-set-to-grow-us-69-billion-by-2022-2019-01-07
Dunn B., Kamath H., Tarascon J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 2011. 334(6058): 928. https://doi.org/10.1126/science.1212741
Kim T.-H., Park J.-S., Chang S.K., Choi S., Ryu J.H., Song H.-K. The Current Move of Lithium Ion Batteries Towards the Next Phase. Adv. Energy Mater. 2012. 2(7): 860. https://doi.org/10.1002/aenm.201200028
https://www.navigantresearch.com/research/navigant-research-leaderboard-lithium-ion-batteries-for-grid-storage
Kuksenko S., Tarasenko Yu. Aluminum Foil as Negative Electrode for High Energy Lithium-Ion Batteries // Scientific Reporting Session of the Research Program of the National Academy of Sciences of Ukraine "New Functional Substances and Chemical Production Materials". (Kyiv, 13 December 2018). Abstracts. P. 31. [in Ukrainian].
Kuksenko S.P., Kaleniuk H.O., Tarasenko Yu.O., Kartel M.T. Influence of electrolyte additive of trimethylsilylisocyanate on properties of electrode with nanosilicon for lithium-ion batteries. Him. Fiz. Tehnol. Poverhn. 2021. 12(1): 67 [in Ukrainian]. https://doi.org/10.15407/hftp12.01.067
Yuca N., Taskin O.S., Arici E. An overview on efforts to enhance the Si electrode stability for lithium ion batteries. Energy Storage. 2020. 2(1): e94. https://doi.org/10.1002/est2.94
Sturm J., Rheinfeld A., Zilberman I., Spingler F.B., Kosch S., Frie F., Jossen A. Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging. J. Power Sources. 2019. 412: 204. https://doi.org/10.1016/j.jpowsour.2018.11.043
https://datasheetspdf.com/pdf-file/974431/Panasonic/NCR18650BF/1
Willenberg L.K., Dechent P., Fuchs G., Sauer D.U., Figgemeier E. High-Precision Monitoring of Volume Change of Commercial Lithium-Ion Batteries by Using Strain Gauges. Sustainability. 2020. 12(2): 28. https://doi.org/10.3390/su12020557
Anseán D., Baure G., González M., Cameán I., Dubarry M. Mechanistic investigation of silicon-graphite / LiNi0.8Mn0.1Co0.1O2 commercial cells for non-intrusive diagnosis and prognosis. J. Power Sources. 2020. 459: 227882. https://doi.org/10.1016/j.jpowsour.2020.227882
Eisele L., Skrotzki J., Schneider M., Bolli C., Erk C., Ludwig T., Schaub A., Novák P. Coating of Li1+x[Ni0.85Co0.10Mn0.05]1-xO2 Cathode Active Material with Gaseous BF3. J. Electrochem. Soc. 2020. 167(12): 120505. https://doi.org/10.1149/1945-7111/aba8b8
Mohanty D., Mazumder B., Devaraj A., Sefat A.S., Huq A., David L.A., Payzant E.A., Li J., Wood III D.L., Daniel C. Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures. Nano Energy. 2017. 36: 76. https://doi.org/10.1016/j.nanoen.2017.04.008
Kuksenko S.P., Danilin V.V., Skakalskii A.I., Lugovoi V.P., Tkachenko A.V. Features of the discharging characteristics of button-type lithium cells with copper-oxide cathode. J. Appl. Chem. USSR. 1992. 65(8):1448.
Kojima T., Ishizu T., Horiba T., Yoshikawa M. Development of lithium-ion battery for fuel cell hybrid electric vehicle application. J. Power Sources. 2009. 189(1): 859. https://doi.org/10.1016/j.jpowsour.2008.10.082
Cabana J., Monconduit L., Larcher D., Palacin M.R. Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Adv. Mater. 2010. 22(35): E170. https://doi.org/10.1002/adma.201000717
Park C.-M., Kim J.-H., Kim H., Sohn H.-J. Li-alloy anode materials for secondary batteries. Chem. Soc. Rev. 2010. 39(8): 3115. https://doi.org/10.1039/b919877f
Nitta N., Yushin G. High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. Part. Part. Syst. Charact. 2014. 31(3): 317. https://doi.org/10.1002/ppsc.201300231
Nitta N., Wu F., Lee J.T., Yushin G. Li-ion battery materials: present and future. Mater. Today. 2015. 18(5): 252. https://doi.org/10.1016/j.mattod.2014.10.040
Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhang Y., Zhang J.-G. Lithium metal anodes to rechargeable batteries. Energy Environ. Sci. 2014. 7(2): 513. https://doi.org/10.1039/C3EE40795K
Kasavajjula U., Wang C., Appleby A.J. Nano- and bulk-silicon based insertion anodes for lithium-ion secondary cells. J. Power Sources. 2007. 163(2): 1003. https://doi.org/10.1016/j.jpowsour.2006.09.084
Obrovac M.N., Chevrier V.L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014. 114(23): 11444. https://doi.org/10.1021/cr500207g
Zuo X., Zhu J., Müller-Buschbaum P., Cheng Y.-J. Silicon based lithium - ion battery anodes: A chronicle perspective review. Nano Energy. 2017. 31: 113. https://doi.org/10.1016/j.nanoen.2016.11.013
Obrovac M.N., Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004. 7(5): A93. https://doi.org/10.1149/1.1652421
Obrovac M.N., Krause L.J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 2007. 154(2): A103. https://doi.org/10.1149/1.2402112
Zhang W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources. 2011. 196(1): 13. https://doi.org/10.1016/j.jpowsour.2010.07.020
Tirado J.L. Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mater. Sci. Eng. R. 2003. 40(3): 103. https://doi.org/10.1016/S0927-796X(02)00125-0
Idota Y., Kubota T., Matsufuji A., Maekawa Y., Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science. 1997. 276(5317): 1395. https://doi.org/10.1126/science.276.5317.1395
Inoue H. High capacity negative electrode materials next to carbon: Nexelion. Book of Abstracts, IMLB-2006. Biarritz, France. June 18-23, 2006. - Abstr. 228.
Hamon Y., Brousse T., Jousse F., Topart P., Buvat P., Schleich D.M. Aluminum negative electrode in lithium ion batteries. J. Power Sources. 2001. 97-98: 185 https://doi.org/10.1016/S0378-7753(01)00616-4
Wang C.Y., Meng Y.S., Ceder G., Li Y. Electrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries. J. Electrochem. Soc. 2008. 155(9): A615. https://doi.org/10.1149/1.2943215
Ui K., Minami T., Ishikawa K., Idemoto Y., Koura N. Application to Negative Electrode for Lithium Secondary Batteries of Electroplated Aluminum Electrode. Electrochemistry. 2005. 73(4): 279. https://doi.org/10.5796/electrochemistry.73.279
Chen Z.X., Qian J.F., X. Ai X.P., Cao Y.L, Yang H.X. Electrochemical performances of Al-based composites as anode materials for Li-ion batteries. Electrochim. Acta. 2009. 54(16): 4118. https://doi.org/10.1016/j.electacta.2009.02.049
Lei X., Xiang J., Ma X., Wang C., Sun J. Surface modification of aluminum with tin oxide coating. J. Power Sources. 2007. 166(2): 509. https://doi.org/10.1016/j.jpowsour.2006.12.105
Lei X., Wang C., Yi Z., Liang Y., Sun J. Effect of particle size on the electrochemical properties of aluminum powders as anode materials for lithium ion batteries. J. Alloy Compd. 2007. 429(1-2): 311. https://doi.org/10.1016/j.jallcom.2006.04.019
Lindsay M.J., Wang G.X., Liu H.X. Al-based anode materials for Li-ion batteries. J. Power Sources. 2003. 119-121: 84. https://doi.org/10.1016/S0378-7753(03)00130-7
Fleischauer M.D., Obrovac M.N., Dahn J.R. Al-Si Thin-Film Negative Electrodes for Li-Ion Batteries. J. Electrochem. Soc. 2008. 155(11): A851. https://doi.org/10.1149/1.2977971
Fleischauer M.D., Obrovac M.N., Dahn J.R. Simple Model for the Capacity of Amorphous Silicon-Aluminum-Transition Metal Negative Electrode Materials. J. Electrochem. Soc. 2006. 153(6): A1201. https://doi.org/10.1149/1.2194628
Jeong G.J., Kim Y.U., Sohn H.J., Kang T. Particulate-reinforced Al-based composite material for anode in lithium secondary batteries. J. Power Sources. 2001. 101(2): 201. https://doi.org/10.1016/S0378-7753(01)00674-7
Trifonova A.V., Momchilov A.A., Puresheva B.L., Abrahams I. Electrochemical lithium intercalation in lead-tin-aluminium solder. Solid State Ionics. 2001. 143(3-4): 319. https://doi.org/10.1016/S0167-2738(01)00885-2
Patent US 4,002,492. Rao B.M.L. Rechargeable lithium-aluminium anode. 1977.
McAlister A.J. The Al−Li (Aluminum−Lithium) system. Bull. Alloy Phase Diagrams. 1982. 3: 177. https://doi.org/10.1007/BF02892377
ASM Handbook. Alloy Phase Diagrams. Baker H. ASM International, Materials Park, Ohio. 1992. P. 2.
Thackeray M.M., Vaugheya J.T., Johnson C.S., Kropf A.J., Benedek R., Fransson L.M.L., Edström K. Structural considerations of intermetallic electrodes for lithium batteries. J. Power Sources. 2003. 113(1): 124. https://doi.org/10.1016/S0378-7753(02)00538-4
Lee J.-I., Song G., Cho S., Han D.-Y., Park S. Lithium metal interface modification for high - energy batteries: approaches and characterization. Batteries Supercaps. 2020. 3(9): 828. https://doi.org/10.1002/batt.202000016
Eshetu G.G., Figgemeir E. Confronting the Chellenges of Next - Generation Silicon Anode - Based Lithium - Ion Batteries: Role Designer Electrolyte Additives and Polymeric Binders. ChemSusChem. 2019. 12(12): 2515. https://doi.org/10.1002/cssc.201900209
Jeppson D.W., Ballif J.L., Yuan W.W., Chou B.E. Lithium Literature Review: Lithium's Properties and Interactions. Hanford Engineering Development Laboratory. (Richland, WA, USA. 1978). https://doi.org/10.2172/6885395
Hong S.-T., Kim J.-S., Lim S.-J., Yoon W.Y. Surface Characterization of Emulsified Lithium Powder Electrode. Electrochim. Acta. 2004. 50(2-3): 535. https://doi.org/10.1016/j.electacta.2004.03.065
Wang K., Ross P.N., Kong F., McLarnon F. The Reaction of Clean Li Surfaces with Small Molecules in Ultrahigh Vacuum: I. Dioxygen. J. Electrochem. Soc. 1996. 143(2): 422. https://doi.org/10.1149/1.1836460
Zhuang G., Ross P.N., Kong F.-P., McLarnon F. The Reaction of Clean Li Surfaces with Small Molecules in Ultrahigh Vacuum: II. Water. J. Electrochem. Soc. 1998. 145(1): 159. https://doi.org/10.1149/1.1838229
Zhuang G., Chen J., Ross P.N. The reaction of lithium with carbon dioxide studied by photoelectron spectroscopy. Surf. Sci. 1998. 418(1): 139. https://doi.org/10.1016/S0039-6028(98)00710-9
Aurbach D., Talyosef Y., Markovsky B., Markevich E., Zinigrad E., Asraf L., Gnanaraj J., Kim H.-J. Design of Electrolyte Solutions for Li and Li-ion Batteries: A Review. Electrochim. Acta. 2004. 50(2-3): 247. https://doi.org/10.1016/j.electacta.2004.01.090
Plichta E., Slane S., Uchiyama M., Salomon M., Chua D., Ebner W.B., Lin H.W. An Improved Li/LixCoO2 Rechargeable Cell. J. Electrochem. Soc. 1989. 136(7): 1865. https://doi.org/10.1149/1.2097063
Aurbach D., Daroux M.L., Faguy P.W, Yeager E. Identification of Surface Films on Lithium in Propylene Carbonate Solutions. J. Electrochem. Soc. 1987. 134(7): 1611. https://doi.org/10.1149/1.2100722
Yoshida H., Fukunaga T., Hazama T., Terasaki M., Mizutani M., Yamachi M. Degradation mechanism of alkyl carbonate solvents used in lithium - ion cells during initial charging. J. Power Sources. 1997. 68(2): 311. https://doi.org/10.1016/S0378-7753(97)02635-9
Aurbach D., Weissman I., Yamin H., Elster E. The Correlation Between Charge/Discharge Rates and Morphology, Surface Chemistry, and Performance of Li Electrodes and the Connection to Cycle Life of Practical Batteries. J. Electrochem. Soc. 1998. 145(5): 1421. https://doi.org/10.1149/1.1838498
Peled E. Lithium Batteries. Ch. 3. (New York: Acad. Press, 1983).
Salomon M. Solubility problems relating to lithium battery electrolytes. Pure Appl. Chem. 1998. 70(10): 1905. https://doi.org/10.1351/pac199870101905
Plichta E., Salomon M., Slane S., Uchiyama M., Chua D., Ebner W.B., Lin H.W. A rechargeable Li/LixCoO2 Cell. J. Power Sources. 1987. 21(1): 25. https://doi.org/10.1016/0378-7753(87)80074-5
Kanamura K., Okagawa T., Takehara Z. Electrochemical oxidation of propylene carbonate (containing various salts ) on aluminium electrodes. J. Power Sources. 1995. 57(1-2): 119. https://doi.org/10.1016/0378-7753(95)02265-1
Krause L.J., Lamanna W., Summerfield J., Engle M., Korba G., Loch R., Atanasoski R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium - ion cells. J. Power Sources. 1997. 68(2): 320. https://doi.org/10.1016/S0378-7753(97)02517-2
Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004. 104(10): 4303. https://doi.org/10.1021/cr030203g
Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014. 114(23): 11503. https://doi.org/10.1021/cr500003w
Ohtaki H. Structural studies on solvation and complexation of metal ions in nonaqueous solutions. Pure Appl. Chem. 1987. 59(9): 1143. https://doi.org/10.1351/pac198759091143
Dudley J.T., Wilkinson D.P., Thomas G., LeVae R., Woo S., Blom H., Horvath C., Juzkow M.W., Denis B., Juric P., Aghakian P., Dahn J.R. Conductivity of electrolytes for rechargeable lithium batteries. J. Power Sources. 1991. 35(1): 59. https://doi.org/10.1016/0378-7753(91)80004-H
Aurbach D., Zinigrad E., Cohen Y., Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics. 2002. 148(3-4): 405. https://doi.org/10.1016/S0167-2738(02)00080-2
Dey A.N. Film formation on lithium anode in propylene carbonate. In: Electrochem. Soc. Fall Meeting. N 62. (N.J. Ext. Abstr. 1970).
Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model. J. Electrochem. Soc. 1979.126(12): 2047. https://doi.org/10.1149/1.2128859
Nazri G., Muller R.H. Composition of surface layers on Li electrodes in PC, LiClO4 of very low water content. J. Electrochem. Soc. 1985. 132(9): 2050. https://doi.org/10.1149/1.2114288
Peled E., Golodnitsky D., Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997. 144(8): L208. https://doi.org/10.1149/1.1837858
Aurbach D., Zinigrad E., Cohen Y., Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics. 2002. 148(3): 405. https://doi.org/10.1016/S0167-2738(02)00080-2
Aurbach D., Gottlieb H. The electrochemical behavior of selected polar aprotic systems. Electrochim. Acta. 1989. 34(2): 141. https://doi.org/10.1016/0013-4686(89)87079-3
Aurbach D., Zaban A., Gofer Y., Ely Y.E., Weissman I., Chusid O., Abramson O. Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. J. Power Sources. 1995. 54(1): 76. https://doi.org/10.1016/0378-7753(94)02044-4
Aurbach D., Markovsky B., Shechter A., Ein‐Eli Y., Cohen H. A comparative study of synthetic graphite and li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J. Electrochem. Soc. 1996.143(12): 3809. https://doi.org/10.1149/1.1837300
Schechter A., Aurbach D., Cohen H. X-ray photoelectron spectroscopy study of surface films formed on li electrodes freshly prepared in alkyl carbonate solutions. Langmuir. 1999. 15(9): 3334. https://doi.org/10.1021/la981048h
Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhang Y., Zhang J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014. 7(2): 513. https://doi.org/10.1039/C3EE40795K
Cheng X.-B., Zhang R., Zhao C.-Z., Wei F., Zhang J.-G., Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016. 3(3):1500213. https://doi.org/10.1002/advs.201500213
Zhang K., Lee G.-H., Park M., Li W., Kang Y.-M. Recent developments of the lithium metal anode for rechargeable non- aqueous batteries. Adv. Energy Mater. 2016. 6(20): 1600811. https://doi.org/10.1002/aenm.201600811
Wang L., Menakath A., Han F., Wang Y., Zavalij P.Y., Gaskell K.J., Borodin O., Iuga D., Brown S.P., Wang C., Xu K., Eichhorn B.W. Identifying the components of the solid - electrolyte interphase in Li-ion batteries. Nat. Chem. 2019. 11(9): 789. https://doi.org/10.1038/s41557-019-0304-z
Kanamura K., Tamura H., Takehara Z. XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts. J. Electroanal. Chem. 1992. 333(1-2): 127. https://doi.org/10.1016/0022-0728(92)80386-I
Kanamura K., Tamura H., Shiraishi S., Takehara Z. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J. Electrochem. Soc. 1995. 142(2): 340. https://doi.org/10.1149/1.2044000
Lu P., Harris S.J. Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 2011. 13(10): 1035. https://doi.org/10.1016/j.elecom.2011.06.026
Shi S.Q., Lu P., Liu Z., Qi Y., Hector L.G., Hong Li, Harris S.J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012. 134(37): 15476. https://doi.org/10.1021/ja305366r
Zhang Q.L., Pan J., Lu P., Liu Z., Verbrugge M.W., Sheldon B.W., Cheng Y.-T., Qi Y., Xiao X. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 2016. 16(3): 2011. https://doi.org/10.1021/acs.nanolett.5b05283
Sazhin S.V., Gorodyskii A.V., Khimchenko M.Y., Kuksenko S.P. New parameters for lithium cyclability in organic electrolytes for secondary batteries. J. Electroanal. Chem. 1993. 344(1-2): 61. https://doi.org/10.1016/0022-0728(93)80046-K
Kedrinsky I.A., Gerasimova L.K., Shilkin V.I., Shmydko I.I. Anode corrosion in lithium power supplies. Electrochemistry. 1995. 31(4): 356. [in Russian].
Kuksenko S.P. Aluminum Foil as Anode Material for Lithium-Ion Batteries: Effect of Electrolyte Compositions on Cycling Parameters. Russ. J. Electrochem. 2013. 49(1): 67. https://doi.org/10.1134/S1023193512110080
Winter M. The solid electrolyte interphase - the most important and the least understood solid electrolyte in rechargeable Li batteries. Zeitschriftfür Physikalische Chemie. 2009. 223(10-11): 1395. https://doi.org/10.1524/zpch.2009.6086
Verma P., Maire P., Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta. 2010. 55(22): 6332. https://doi.org/10.1016/j.electacta.2010.05.072
Gauthier M., Carney T.J., Grimaud A., Giordano L., Pour N., Chang H.-H., Fenning D.P., Lux S.F., Paschos O., Bauer C., Maglia F., Lupart S., Lamp P., Yang S.-H. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 2015. 6(22): 4653. https://doi.org/10.1021/acs.jpclett.5b01727
Cresce A., Russell S.M., Baker D.R., Gaskell K.J., Xu K. In situ and quantitative characterization of solid electrolyte interphases. Nano Lett. 2014. 14(3): 1405. https://doi.org/10.1021/nl404471v
Zheng J., Zheng H., Wang R., Ben L., Lu W., Chen L., ChenL., Li H. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2014. 16(26): 13229. https://doi.org/10.1039/C4CP01968G
Pirskyy Y., Murafa N., Korduban O.M., Ŝubrt J. Nanostructured catalysts for oxygen electroreduction based on bimetallic monoethanolamine complexes of Co (III) and Ni (II). J. Appl. Electrochem. 2014. 44(11): 1193. https://doi.org/10.1007/s10800-014-0732-9
Grande L., Paillard E., Hassoun J., Park J.-B., Lee Y.-J., Sun Y.-K., Passerini S., Scrosati B. The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 2015. 27(5): 784. https://doi.org/10.1002/adma.201403064
He P., Zhang T., Jiang J., Zhou H. Lithium−Air Batteries with Hybrid Electrolytes. J. Phys. Chem. Lett. 2016. 7(7): 1267. https://doi.org/10.1021/acs.jpclett.6b00080
Bass K., Mitchell P.J., Wilcox G.D., Smith J. Methods for the reduction of shape change and dendritic growth in zinc - based secondary cells. J. Power Sources. 1991. 35(3): 333. https://doi.org/10.1016/0378-7753(91)80117-G
Linden D., Reddy T.B. Handbook of batteries. 3rd ed. (New York: McGrawHill, 2002).
Zhuang G.V., Xu K., Yang H., Jow T.R., Ross P.N. Lithium Ethylene Dicarbonate Identified as the Pimary Product of Chemical and Electrochemical Reduction of EC in 1.2 M / EC:EMC Electrolyte. J. Phys. Chem. B. 2005. 109(37): 17567. https://doi.org/10.1021/jp052474w
Zhang X., Kostecki R., Richardson T.J., Pugh J.K., Ross P.N. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. J. Electrochem. Soc. 2001. 148(12): A1341. https://doi.org/10.1149/1.1415547
Zhuang G.V., Yang H., Blizanac B., Ross P.N. A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR - FTIR Spectroscopy. Electrochem. Solid State Lett. 2005. 8(9): A441. https://doi.org/10.1149/1.1979327
Gresce A.V., Borodin O., Xu K. Correlating Li+ Solvation Sheath Structure with Interphasial Chemistry on Graphite. J. Phys. Chem. C. 2012. 116(50): 26111. https://doi.org/10.1021/jp303610t
Zheng J., Kim M.S., Tu Z., Choudhury S., Tian Tang T., Archer L.A. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 2020. 49(9): 2701. https://doi.org/10.1039/C9CS00883G
Satter R. Effects of Light-Dark Cycles. Science. 1976. 192(4245): 1226. https://doi.org/10.1126/science.192.4245.1226
Nakajima K. Conversation too Hot to Handle. Mainichi Daily News. 1989. P. 1.
Pennington S. Moving in on Moli. Vancouver Sun. Business Section. (September 28, 1991).
Rao B.M.L., Francis R.W., Christopher H.A. Lithium-Aluminum Electrode. J. Electrochem. Soc. 1977. 124(10): 1490. https://doi.org/10.1149/1.2133098
Lin D., Liu Y., Cui Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotechnol. 2017. 12: 194. https://doi.org/10.1038/nnano.2017.16
Guo Y., Li H., Zhai T. Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Adv. Mater. 2017. 29(29): 1700007. https://doi.org/10.1002/adma.201700007
Tikekar M.D., Choudhury S., Tu Z., Archer L.A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy. 2016. 1: 16114. https://doi.org/10.1038/nenergy.2016.114
Rehnlund D., Lindgren F., Böhme S., Nordh T., Zou Y., Pettersson J., Bexell U., Boman M., Edström K., Nyholm L. Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries. Energy Environ. Sci. 2017. 10(6): 1350. https://doi.org/10.1039/C7EE00244K
Wang D., Zhang W., Zheng W., Cui X., Rojo T., Zhang Q. Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface. Energy. Adv. Sci. 2017. 4(1): 1600168. https://doi.org/10.1002/advs.201600168
Li X., Zheng J., Ren X., Engelhard M.H., Zhao W., Li Q., Zhang J.-G., Xu W. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. Adv. Energy Mater. 2018. 8(15): 1703022. https://doi.org/10.1002/aenm.201703022
López C.M., Vaughey J.T., Dees D.W. Morphological transitions on lithium metal anodes. J. Electrochem. Soc. 2009. 156(9): A726. https://doi.org/10.1149/1.3158548
Bieker G., Winter M., Bieker P. Electrochemical in situ investigations of sei and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015. 17(14): 8670. https://doi.org/10.1039/C4CP05865H
Wandt J., Marino C., Gasteiger H.A., Jakes P., Eichel R.-A., Granwehr J. Operando electron paramagnetic resonance spectroscopy − formation of mossy lithium on lithium anodes during charge-discharge cycling. Energy Environ. Sci. 2015.8(4): 1358. https://doi.org/10.1039/C4EE02730B
Sacci R.L., Black J.M., BalkeN., Dudney N.J., More K.L., Unocic R.R. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 2015. 15(3): 2011. https://doi.org/10.1021/nl5048626
Dornbusch D.A., Hilton R., Lohman S.D., Suppes G.J. Experimental Validation of the Elimination of Dendrite Short-Circuit Failure in Secondary Lithium-Metal Convection Cell Batteries. J. Electrochem. Soc. 2015. 162(3): A262. https://doi.org/10.1149/2.0021503jes
Lu D., Shao Y., Lozano T., Bennett W.D., Graff G.L., Polzin B., Zhang J., Engelhard M.H., Saenz N.T., Henderson W.A., Bhattacharya P., Liu J., Xiao J. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes. Adv. Energy Mater. 2015. 5(3): 1400993. https://doi.org/10.1002/aenm.201400993
Chang H.J., Ilott A.J., Trease N.M., Mohammadi M., Jerschow A., Grey C.P. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. J. Am. Chem. Soc. 2015. 137(48): 15209. https://doi.org/10.1021/jacs.5b09385
Li W., Zheng H., Chu G., Luo F., Zheng J., Xiao D., Li X., Gu L., Li H., Wei X., Chen Q., Chen L. Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation. Faraday Discuss. 2014. 176: 109. https://doi.org/10.1039/C4FD00124A
Lazzari M., Scrosati B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 1980. 127(3): 773. https://doi.org/10.1149/1.2129753
Nagaura T., Tozawa K. Lithium ion rechargeable battery. Prog. Batteries and Solar Cells. 1990. 9: 209.
Lang J., Qi L., Luo Y., Wu H. High performance lithium metal anode: progress and prospects. Energy Storage Mater. 2017. 7: 115. https://doi.org/10.1016/j.ensm.2017.01.006
Gauthier M., Carney T.J., Grimaud A., Giordano L., Pour N., Chang H.-H., Fenning D.P., Lux S.F., Paschos O., Bauer Ch., Maglia F., Lupart S., Lamp P., Shao-Horn Y. Electrode−Electrolyte Interface in Li-ion Batteries: Current Understanding and New Insights. J. Phys. Chem. Lett. 2015. 6(22): 4653. https://doi.org/10.1021/acs.jpclett.5b01727
Fong R., Sacken U., Dahn J.R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 1990.137(7): 2009. https://doi.org/10.1149/1.2086855
Naji A., Ghanbaja J., Humbert B., Willmann P., Billaud D. Electroreduction of graphite in LiClO4-ethylene carbonate electrolyte: characterization of the passivating layer by transmission electron microscopy and fourier-transform infrared spectroscopy. J. Power Sources. 1996. 63(1): 33. https://doi.org/10.1016/S0378-7753(96)02439-1
Novak P., Joho F., Imhof R., Panitz J.C., Haas O. In situ investigation of the interaction between graphite and electrolyte solutions. J. Power Sources. 1999. 81-82: 212. https://doi.org/10.1016/S0378-7753(99)00119-6
Vetter J., Novak P., Wagner M.R., Veit C., Möller K-C., Besenhard J., Winter M., Wohlfahrt-Mehrens M., Vogler C., Hammouce A. Ageingmechanisms in lithium-ionbatteries. J. Power Sources. 2005. 147(1-2): 269. https://doi.org/10.1016/j.jpowsour.2005.01.006
Heine J., Hilbig P., Qi X., Niehoff P., Winter M., Bieker P. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J. Electrochem. Soc. 2015. 162(6): A1094. https://doi.org/10.1149/2.0011507jes
Zuo X., Zhu J., Müller-Buschbaum P., Cheng Y.-J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy. 2017. 31: 113. https://doi.org/10.1016/j.nanoen.2016.11.013
Graetz J., Ahn C.C., Yazami R., Fultz B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 2003. 6(9): A194. https://doi.org/10.1149/1.1596917
Xie J., Cao G.S., Zhao X.B. Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells. Mater. Chem. Phys. 2004. 88(2-3): 295. https://doi.org/10.1016/j.matchemphys.2004.06.045
Szczech J.R., Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011. 4(1): 56. https://doi.org/10.1039/C0EE00281J
Liu R., Duay J., Lee S.B. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 2011. 47(5): 1384. https://doi.org/10.1039/C0CC03158E
Lee K.T., Cho J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today. 2011. 6(1): 28. https://doi.org/10.1016/j.nantod.2010.11.002
Wu H., Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today. 2012. 7(5): 414. https://doi.org/10.1016/j.nantod.2012.08.004
Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008. 3(1): 31. https://doi.org/10.1038/nnano.2007.411
Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010. 9(4): 353. https://doi.org/10.1038/nmat2725
Kovalenko I., Zdyrko B., Magasinski A., Hertzberg B., Milicev Z., Burtovyy R., Luzinov I., Yushin G. A major constituent of brown algae for use in high-capacity li-ion batteries. Science. 2011. 334(6052): 75. https://doi.org/10.1126/science.1209150
Wu H., Chan G., Choi J.W., Ryu I., Yao Y., McDowell M.T., Lee S.W., Jackson A., Yang Y., Hu L., Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012. 7(5): 310. https://doi.org/10.1038/nnano.2012.35
Krivchenko V.A., Itkis D.M., Evlashin S.A., Semenenko D.A., Goodilin E.A., Rakhimov A.T., Stepanov A.S., Suetin N.V., Pilevsky A.A., Voronin P.V. Carbon nanowalls decorated with silicon for lithium-ion batteries. Carbon. 2012. 50(3): 1438. https://doi.org/10.1016/j.carbon.2011.10.042
Liu N., Lu Z., Zhao J., McDowell M.T., Lee H.-W., Zhao W., Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014. 9(3): 187. https://doi.org/10.1038/nnano.2014.6
Kuksenko S.P. Silicon-Containing Anodes with High Capacity Loading for Lithium-Ion Batteries. Russ. J. Electrochem. 2014. 50(6): 537. https://doi.org/10.1134/S1023193514060068
Feng K., Li M., Liu W., Kashkooli A.Gh., Xiao X., Cai M., Chen Zh. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small. 2018. 14(8): 1702737. https://doi.org/10.1002/smll.201702737
Kuksenko S.P., Lutsenko V.G. Li+-insertionintofractalSi - nanocarboncomposite. In: Theodor Grotthuss Electrochemistry Conference. (Vilnius, DABA, 2005). P. 95.
Kim H., Han B., Choo J., Cho J. Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries. Ang. Chem. Int. Ed. 2008. 47(52): 10151. https://doi.org/10.1002/anie.200804355
Zhu J., Gladden C., Liu N., Cui Y., Zhang X. Nanoporous silicon networks as anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2013. 15(2): 440. https://doi.org/10.1039/C2CP44046F
Lv R., Yang J., Gao P., NuLi Y., Wang J. Electrochemical behavior of nanoporous/nanofibrous Si anode materials prepared by mechanochemical reduction. J. Alloys Compd. 2010. 490(1-2): 84. https://doi.org/10.1016/j.jallcom.2009.10.023
Liu N., Wu H., McDowell M.T., Yao Y., Wang C., Cui Y. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Lett. 2012. 12(6): 3315. https://doi.org/10.1021/nl3014814
Kang K., Lee H.-S., Han D.-W., Kim G.-S., Lee D., Lee G., Kang Y.-M., Jo M.-H. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl. Phys. Lett. 2010. 96(5): 053110. https://doi.org/10.1063/1.3299006
Kim H., Cho J. Superior Lithium Electroactive Mesoporous Si@Carbon Core - Shell Nanowires for Lithium Battery Anode Material. Nano Lett. 2008. 8(11): 3688. https://doi.org/10.1021/nl801853x
Park M.-H., Kim M.G., Joo J., Kim K., Kim J., Ahn S., Cui Y., Cho J. Silicon Nanotube Battery Anodes. Nano Lett. 2009. 9(11): 3844. https://doi.org/10.1021/nl902058c
Cui L.-F., Yang Y., Hsu C.-M., Cui Y. Carbon - Silicon Core - Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Lett. 2009. 9(9): 3370. https://doi.org/10.1021/nl901670t
Evanoff K., Benson G., Schauer M., Kovalenko I., Lashmore D., Ready W.J., Yushin G. Ultrastrong Silicon - Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium - Ion Battery Anode. ACS Nano. 2012. 6(11): 9837. https://doi.org/10.1021/nn303393p
Xiang H., Zhang K., Ji G., Lee J.Y., Zou C., Chen X., Wu J. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon. 2011. 49(5): 1787. https://doi.org/10.1016/j.carbon.2011.01.002
Evanoff K., Magasinski A., Yang J., Yushin G. Nanosilicon-Coated Graphene Granules as Anodes for Li-ion Batteries. Adv. Energy Mater. 2011. 1(4): 495. https://doi.org/10.1002/aenm.201100071
Zhou X., Yin Y.-X., Wan L.-J., Guo Y.-G. Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium - Ion Batteries. Adv. Energy Mater. 2012. 2(9): 1086. https://doi.org/10.1002/aenm.201200158
Zhu C., Zhang Y., Ma Z., Wang H., Sly G.L. Yolk-void-shell Si-C nano-particles with tunable void size for high-performance anode of lithium ion batteries. Nanotechnology. 2021. 32(8): 085403. https://doi.org/10.1088/1361-6528/abc77f
Park G.D., Choi J.H., Jung D.S., Park J.S., Kang Y.C. Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries. J. Alloys Compd. 2020. 821: 153224. https://doi.org/10.1016/j.jallcom.2019.153224
Chen H., Hou X., Chen F., Wang S., Wu B, Ru Q., Qin H., Xia Y. Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon. 2018. 130: 433. https://doi.org/10.1016/j.carbon.2018.01.021
Wang F., Wang B., Ruan T., Gao T., Song R., Jin F., Zhou Y., Wang D., Liu H., Dou S. Construction of Structure-Tunable Si@Void@C Anode Materials for Lithium-Ion Batteries through Controlling the Growth Kinetics of Resin. ACS Nano. 2019. 13(10): 12219. https://doi.org/10.1021/acsnano.9b07241
Ashuri M., He Q., Zhang K., Emani S., Shaw L.L. Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol-gel coating of polystyrene nanoparticles. J. Sol-Gel Sci. Technol. 2017. 82(1): 201. https://doi.org/10.1007/s10971-016-4265-z
Liang G., Qin X., Zou J., Luo L., Wang Y., Wu M., Zhu H., Chen G., Kang F., Li B. Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon. 2018. 127: 424. https://doi.org/10.1016/j.carbon.2017.11.013
Huang H., Rao P., Choi W.M. Carbon-coated silicon/crumpled graphene composite as anode material for lithium-ion batteries. Curr. Appl. Phys. 2019. 19(12): 1349. https://doi.org/10.1016/j.cap.2019.08.024
Guan P., Li J., Lu T., Guan T., Ma Z., Peng Z., Zhu X., Zhang L. Facile and Scalable Approach To Fabricate Granadilla-like Porous-Structured Silicon-Based Anode for Lithium Ion Batteries. ACS Appl. Mater. Interfaces. 2018. 10(40): 34283. https://doi.org/10.1021/acsami.8b12071
Zhu X., Choi S.H., Tao R., Jia X., Lu Yu. Building high-rate silicon anodes based on hierarchical Si@C@CNT nanocomposite. J. Alloys Compd. 2019. 791: 1105. https://doi.org/10.1016/j.jallcom.2019.03.354
Wang Z., Mao Z., Lai L., Okubo M., Song Y.H., Zhou Y.J., Liu X., Huang W. Sub-micron silicon/pyrolyzedcarbon@natural graphite self-assembly composite anode material for lithium-ion batteries. Chem. Eng. J. 2017. 313: 187. https://doi.org/10.1016/j.cej.2016.12.072
Park B.H., Jeong J.H., Lee G.-W., Kim Y.H., Roh K.C., Kim K.B. Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode. J. Power Sources. 2018. 394: 94. https://doi.org/10.1016/j.jpowsour.2018.04.112
Yan Y., Xu Z., Liu C., Dou H., Wei J., Zhao X., Ma J., Dong Q., Xu H., He Y.-S., Ma Z.F., Yang X. Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2019. 11(19): 17375. https://doi.org/10.1021/acsami.9b01909
Luo J., Zhao X., Wu J., Jang H.D., Kung H.H., Huang J. Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. J. Phys. Chem. Lett. 2012. 3(13): 1824. https://doi.org/10.1021/jz3006892
He Y., Han F., Wang F., Tao J., Wu H., Zhang F., Liu J. Optimal microstructural design of pitch-derived soft carbon shell in yolk-shell silicon/carbon composite for superior lithium storage. Electrochim. Acta. 2021. 373: 137924. https://doi.org/10.1016/j.electacta.2021.137924
Xie J., Tong L., Su L., Xu J., Wang L., Wang J. Core-shell yolk-shell Si@C@Void@Cnanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sources. 2017. 342: 529. https://doi.org/10.1016/j.jpowsour.2016.12.094
Guo S., Hu X., Hou Y., Wen Z. Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 2017. 9(48): 42084. https://doi.org/10.1021/acsami.7b13035
Zhao H., Xu X., Yao Y., Zhu H., Li Y. Assembly of Si@Void@Graphene Anodes for Lithium-Ion Batteries: In Situ Enveloping of Nickel-Coated Silicon Particles with Graphene. ChemElectroChem. 2019. 6(17): 4617. https://doi.org/10.1002/celc.201901113
Ding X., Liu X., Huang Y., Zhang X., Zhao Q., Xiang X., Li G., He P., Wen Z., Li J., Huang Y. Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. Nano Energy. 2016. 27: 647. https://doi.org/10.1016/j.nanoen.2016.07.031
Takamura T., Ohara S., Uehara M., Suzuki J., Sekine K. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources. 2004. 129: 96. https://doi.org/10.1016/j.jpowsour.2003.11.014
Park O.K., Cho Y., Lee S., Yoo H.-C., Song H.-K., Cho J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011. 4(5): 1621. https://doi.org/10.1039/c0ee00559b
Shen T., Xie D., Tang W., Wang D., Zhang X., Xia X., Wang X., Tu J. Biomass-derived carbon/silicon three-dimensional hierarchical nanostructure as anode material for lithium ion batteries. Mat. Res. Bull. 2017. 96(4): 340. https://doi.org/10.1016/j.materresbull.2017.04.014
Wang M.-S., Song W.-L., Wang J., Fan L.-Z. Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon. 2015. 82: 337. https://doi.org/10.1016/j.carbon.2014.10.078
Wu J., Qin X., Zhang H., He Y.-B., Li B., Ke L., Lv W., Du H., Yang Q.-H., Kang F. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon. 2015. 84: 434. https://doi.org/10.1016/j.carbon.2014.12.036
Su L., Xie J., Xu Y., Wang L., Wang Y., Ren M. Preparation and lithium storage performance of yolk-shell Si@void@C nanocomposites. Phys. Chem. Chem. Phys. 2015. 17(27): 17562. https://doi.org/10.1039/C5CP01954K
Favors Z., Wang W., Bay H.H., Mutlu Z., Ahmed K., Liu C., Ozkan M., Ozkan C.S. Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries. Sci. Rep. 2014. 4: 5623. https://doi.org/10.1038/srep05623
Smith A.J., Burns J.C., Zhao X., Deijun X., Dahn J.R. A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 2011. 158(5): A447. https://doi.org/10.1149/1.3557892
Smith A.J., Burns J.C., Dahn J.R. A High Precision Study of the Coulombic Efficiency of Li-Ion Batteries. Electrochem. Solid-State Lett. 2010. 13(12): A177. https://doi.org/10.1149/1.3487637
Kuksenko S.P. Cycling Parameters of Silicon Anode Materials for Lithium-Ion Batteries. Russ. J. Appl. Chem. 2010. 83(4): 641. https://doi.org/10.1134/S1070427210040130
Kuksenko S.P. Silicon Electrodes for Lithium-Ion Batteries: Ways of Cycling Parameters Improving. Fundamental Problems in Lithium Electrochemical Systems. (Novocherkassk: SRSTU (NPI), 2010). P. 147. [in Russian].
Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.O., Kartel M.T. Forminga Stable Amorphous Phasein the Carbon-Coated Siliconupon Deep Electrochemical Lithiation. Him. Fiz. Tehnol. Poverhn. 2010. 1(1): 57. [in Russian].
Kwon Y., Ryu G.H., Oh S.M. Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries. Electrochim. Acta. 2010. 55(27): 8051. https://doi.org/10.1016/j.electacta.2010.01.054
Holzapfel M., Buqa H., Krumeich F., Novák P., Petrat F.-M., Veit C. Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium - Ion Batterries. Electrochem. Solid-State Lett. 2005. 8(10): A516. https://doi.org/10.1149/1.2030448
Kuksenko S., Tarasenko Yu. Aluminum Foil as Multifunctional Material for High Energy Lithium-Ion Batteries with Low Cost of Manufacturing. VIII Ukrainian Electrochemical Congress. (Lviv, 4-7 June 2018): Collection of Scientific Articles. A.A. Omel'chuk, P.E. Gladyshevskii, O.V. Reshetnyak (eds.). Part 2. (Lviv: Research and Publishing Center of the T. Shevchenko Scientific Society, 2018). P. 297. [in Ukrainian].
Li H., Yamaguchi T., Matsumoto S., Hoshikawa H., Kumagai T., Okamoto N.L., Ichitsubo T. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat. Commun. 2020. 11: 1584. https://doi.org/10.1038/s41467-020-15452-0
Qin B., Jeong S., Zhang H., Ulissi U., Carvalho D., Varzi A., Passerini S. Enabling Reversible (De-)Lithiation of Aluminum via the Use of Bis(fluorosulfonyl)imide-based Electrolytes. ChemSusChem. 2019. 12(1): 208. https://doi.org/10.1002/cssc.201801806
Tahmasebi M.H., Kramer D., Mönig R., Boles S.T. Insights into Phase Transformations and Degradation Mechanisms in Aluminum Anodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2019. 166(3): A5001. https://doi.org/10.1149/2.0011903jes
Tasaki K., Harris S.J. Computational study on the solubility of lithium salts formed on lithium ion battery negative electrode in organic solvents. J. Phys. Chem. C. 2010. 114(17): 8076. https://doi.org/10.1021/jp100013h
Yan J., Xia B.-J., Su Y.-C., Zhou X.-Z., Zhang J., Zhang H.-G. Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochim. Acta. 2008. 53(24): 7069. https://doi.org/10.1016/j.electacta.2008.05.032
Grugeon S., Jankowski P., Cailleu D., Forestier C., Sannier L., Armand M., Johansson P., Laruelle S. Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. J. Power Sources. 2019. 427: 77. https://doi.org/10.1016/j.jpowsour.2019.04.061
Jung R., Metzger M., Haering D., Solchenbach S., Marino C., Tsiouvaras N., Stinner C., Gasteiger H.A. Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li - Ion Batteries. J. Electrochem. Soc. 2016. 163(8): A1705. https://doi.org/10.1149/2.0951608jes
Yohannes Y.B., Lin S.D., Wu N.-L. In Situ DRIFTS Analysis of Solid Electrolyte Interphase of Si-Based Anode with and without Fluoroethylene Carbonate Additive. J. Electrochem. Soc. 2017. 164(14): A3641. https://doi.org/10.1149/2.0681714jes
Ein-Eli Y., Thomas S.R., Koch V., Aurbach D., Markovsky B., Schechter A. Ethylmethylcarbonate, a Promising Solvent for Li‐Ion Rechargeable Batteries. J. Electrochem. Soc. 1996. 143(12): L273. https://doi.org/10.1149/1.1837293
Su C.-C., He M., Shi J., Amine R., Zhang J., Amine K. Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries. Angew. Chem. Int. Ed. 2020. 59(41): 18229. https://doi.org/10.1002/anie.202008081
Shi Q., Heng S., Qu Q., Gao T., Liu W., Hang L., Zheng H. Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries. J. Mater. Chem. A. 2017. 5(22): 10885. https://doi.org/10.1039/C7TA02706K
Choi N.-S., Yew K.H., Lee K.Y., Sung M., Kim H, Kim S.-S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources. 2006. 161(2): 1254. https://doi.org/10.1016/j.jpowsour.2006.05.049
Kuksenko S.P., Kovalenko I.O. Synthesis of a Silicon-Graphite Composite for the Hybrid Electrode of Lithium-Ion Batteries. Russ. J. Appl. Chem. 2010. 83(10): 1811. https://doi.org/10.1134/S1070427210100149
Kuksenko S.P., Kovalenko I.O. Silicon Nanopowder as Active Material for Hybrid Electrodes of Lithium-Ion Batteries. Russ. J. Appl. Chem. 2011. 84(7): 1179. https://doi.org/10.1134/S107042721107010X
Kuksenko S.P., Kuts V.S., Tarasenko Yu.O., Kartel M.T. Electrochemical Investigations and Quantum Chemical Calculations of the System SinLim. Him. Fiz. Tehnol. Poverhn. 2011. 2(3): 221. [in Russian].
Kuksenko S.P., Kovalenko I.O., Tarasenko Yu.O., Kartel M.T. Nanocomposite Slicon-Carbon for Hybrid Electrodes of Lithium-Ion Batteries. Voprosy Khimii I Khimicheskoi Tekhnologii. 2011. 4(1): 299. [in Russian].
Nakai H., Kubota T., Kita A., Kawashima A. Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes. J. Electrochem. Soc. 2011. 158(7): A798. https://doi.org/10.1149/1.3589300
Etacheri V., Haik O., Goffer Y., Roberts G.A., Stefan I.C., Fasching R., Aurbach D. Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery anodes. Langmuir. 2012. 28(1): 965. https://doi.org/10.1021/la203712s
Lin Y.-M., Klavetter K.C., Abel P.R., Davy N.C., Snider J.L., Heller A., Mullins B. High Performance Silicon Nanoparticle Anode in Fluoroethylene Carbonate-Based Electrolyte for Li-Ion Batteries. Chem. Commun. 2012. 48(58): 7268. https://doi.org/10.1039/c2cc31712e
Elazari R., Salitra G., Gershinsky G., Garsuch A., Panchenko A., Aurbach D. Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS2 Cathodes and Fluoroethylene Carbonate (FEC) as a Critically Important Component. J. Electrochem. Soc. 2012. 159(9): A1440. https://doi.org/10.1149/2.029209jes
Ma L., Glazier S.L., Petibon R., Xia J., Peters J.M., Liu Q., Allen J., Doig R.N.C., Dahn J.R. A Guide to Ethylene Carbonate-Free Electrolyte Making for Li-Ion Cells. J. Electrochem. Soc. 2017. 164(1): A5008. https://doi.org/10.1149/2.0191701jes
Zhang J., Shen C., Liu P., Qiao Y. Understanding the effect of electrolyte on the cycle and structure stability of high areal capacity Si-Al film electrode. Ionics. 2019. 25(2): 483. https://doi.org/10.1007/s11581-018-2816-8
Xia J., Aiken C.P., Ma L., Kim G.Y., Burns J.C., Chen L.P., Dahn J.R. Combinations of Ethylene Sulfite (ES) and Vinylene Carbonate (VC) as Electrolyte Additives in Li(Ni1/3Mn1/3Co1/3)O2/Graphite Pouch Cells. J. Electrochem. Soc. 2014. 161(6): A1149. https://doi.org/10.1149/2.108406jes
Jung H.M., Park S.-H., Jeon J., Choi Y., Yoon S., Cho J.-J., Oh S., Kang S., Han Y.-K., Lee H. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. J. Mater. Chem. A. 2013. 1(38): 11975. https://doi.org/10.1039/c3ta12580g
Liu S., Ji X., Piao N., Chen J., Eidson N., Xu J., Wang P., Chen L., Zhang J., Deng T., Hou S., Jin T., Wan H., Li J., Tu J., Wang C. Inorganic-rich Solid Electrolyte Interphase for Advanced Lithium Metal Batteries in Carbonate Electrolytes. Angew. Chem. Int. Ed. 2021. 60(7): 3661. https://doi.org/10.1002/anie.202012005
Wang H., Tan H., Luo X., Wang H., Ma T., Lv M., Song X., Jin S., Chang X., Li X. Progress in aluminum-based anode materials for lithium ion batteries J. Mater. Chem. A. 2020. 8(48): 25649. https://doi.org/10.1039/D0TA09762D
Soto F.A., Martinez de la Hoz J.M., Seminario J.M., Balbuena P.B. Modeling solid-electrolyte interfacial phenomena in silicon anodes. Curr. Opin. Chem. Eng. 2016. 13: 179. https://doi.org/10.1016/j.coche.2016.08.017
Philippe B., Dedryvère R., Gorgoi M., Rensmo H., Gonbeau D., Edström K. Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries - A Photoelectron Spectroscopy Study. Chem. Mater. 2013. 25(3): 394. https://doi.org/10.1021/cm303399v
Kuksenko S.P., Tarasenko Yu.O., Kovalenko I.O, Kartel M.T. A carbon coating of micro- and nanosilicon: progress of silicon anode materials for lithium-ion batteries. Chemistry, Physics and Surface Technology. (Kyiv: Naukova dumka. 2009). 15: 144. [in Russian].
Son, B.D., Lee J.K., Yoon W.Y. Effect of Tungsten Nanolayer Coating on Si Electrode in Lithium-ion Battery. Nanoscale Res. Lett. 2018. 13(1): 58. https://doi.org/10.1186/s11671-018-2460-2
Zhang Y., Liu Z., Zhu C., Guo X., Liu W., Qu Y. Boosting anode performance of mesoporous Si by embedding copper nano-particles. J. Alloys Compd. 2021. 850: 156863. https://doi.org/10.1016/j.jallcom.2020.156863
Arie A.A., Song J.O., Lee J.K. Structural and electrochemical properties of fullerene - coated silicon film as anode materials for lithium secondary batteries. Mater. Chem. Phys. 2009. 113(1): 249. https://doi.org/10.1016/j.matchemphys.2008.07.082
Kuksenko S.P. Nonporous nanostructured 3D-silicon for anodes of lithium-ion batteries. In: Nanotechnologies and Nanomaterials for Business and Technology Areas. Booklet of nanotechnologies of the participants of the International Technology Meeting (November 22, 2013, Kyiv, Ukraine). P. 11.
Kuksenko S.P. Nonporous 3D-Silicon - High Efficiency Electrode Nanomaterial for New Generation of Lithium-Ion Batteries. In: Nanotechnologies and Nanomaterials. Technology Developments Book. (Lviv: Eurosvit, 2014). P. 218.
Kuksenko S.P. Silicon-Containing Anodes with Low Accumulated Irreversible Capacity for Lithium-Ion Batteries. Russ. J. Appl. Chem. 2013. 86(5): 703. https://doi.org/10.1134/S1070427213050169
Kuksenko S.P. Highly disordered silicon-containing carbon from polymethylphenylsiloxane as anode material for lithium-ion batteries: anomalous behavior in thin layer. Russ. J. Appl. Chem. 2016. 89(8): 1237. https://doi.org/10.1134/S1070427216080048
Kuksenko S.P., Tarasenko Yu.A., Kartel M.T. Nonporous 3D-Silicon - Electrode Nanomaterial of High Efficiency for Practical Using in Lithium-Ion Batteries. In: Nanoscale Systems and Nanomaterials: Researches in Ukraine. (Kyiv: Academperiodika, 2014). P. 638. [in Russian].
Kuksenko S.P. Irreversible capacity losses upon lithium insertion/extraction in graphite - silicon electrodes. Chemistry, physics and surface technology. (Kyiv: Naukova dumka, 2008). 14: 123. [in Russian].
Wetjen M., Pritzl D., Jung R., Solchenbach S., Ghadimi R., Gasteiger H.A. Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2017. 164(12): A2840. https://doi.org/10.1149/2.1921712jes
Patent US 10483529 B2. HO1M 4/36, 4/38, 4/62, 10/0525, 10/04. Put S., Van Genechten D., Driesen K., Hu J., Strauven Y., Muto A., Ishii N., Takeuchi M. Composite powder for use in an anode of a lithium ion battery, method of preparing such a composite powder and method for analysing such a composite powder. 2019.
Patent US 10847782 B2. HO1M 4/134, C01B 32/00, C01B 33/03, H01M 4/362. Put S., Van Genechten D., Gilleir J., Marx N. Powder, electrode and battery comprising such a powder. 2020.
Kaspar J., Graczyk-Zajac M., Lauterbach S., Kleebe H.-J., Riedel R. J. Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties. J. Power Sources. 2014. 269: 164. https://doi.org/10.1016/j.jpowsour.2014.06.089
Kuksenko S.P. Ceramic Si É SiOC&C nanostructures. Ukrainian-German Symposium on Physics and Chemistry of Nanostructures and on Nanobiotechnology. Kyiv, Ukraine. 21-25 September 2015. Book of Abstr. 96.
Zhao K., Tritsaris G.A., Pharr M., Wang W.L., Okeke O., Suo Z., Vlassak J.J., Kaxiras E. Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 2012. 12(8): 4397. https://doi.org/10.1021/nl302261w
DOI: https://doi.org/10.15407/hftp12.03.226
Copyright (©) 2021 S. P. Kuksenko, H. O. Kaleniuk, Yu. O. Tarasenko, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.