Хімія, фізика та технологія поверхні, 2010, 1 (2), 148-165.

Вплив морфології частинок атмосферних аерозолів на кінетику їх взаємодії з леткими домішками



V. I. Bogillo

Анотація


Проаналізовано вплив морфології твердих частинок атмосферних аерозолів на імовірності взаємодії з леткими домішками, що визначаються в лабораторних експериментах, та на константи швидкості видалення цих домішок в гетерогенних процесах, які використовують в транспортних моделях атмосфери. Запропоновано рівняння, що дозволяють визначати ці імовірності із залежностей констант швидкості та імовірностей від маси твердого субстрату, які спостерігаються в проточних реакторах. Показано, що більшість мінеральних та вуглецевих аерозолів в атмосфері є агрегатами наночастинок або частинками з внутрішніми нанопорами. Тому використання для них наближення непроникних сферичних частинок приводить до недооцінювання швидкості гетерогенного стоку домішок з атмосфери. Виявлено вірогідність прискорення реакції, що перебігає за механізмом Ленгмюра-Хіншельвуда, за рахунок взаємодії домішок із стінками нанопор атмосферних частинок і утворення стійких адсорбційних комплексів на поверхні.

Повний текст:

PDF (Русский)

Посилання


Sander S.P., Friedl R.R., Golden D.M. et al. Chemical kinetics and photochemical data for use in atmospheric studies. – Pasadena, CA, USA: Jet Propulsion Laboratory, 2006. – JPL Publication 06–2. Evaluation Number 15. – 522 p. Online: http://jpldataeval.jpl.nasa.gov.

Crowley J.N., Ammann M., Cox R.A. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates // Atmos. Chem. Phys. Discuss. – 2010. – V. 10, N 2. – P. 5233–5564.

Богилло В.И. Влияние состава минеральных аэрозолей на кинетику гетерогенного стока летучих примесей из атмосферы // Химия, физика и технология поверхности. – 2010. – Т. 1, № 1. – С. 38–49.

Underwood G.M., Li P., Usher C.R., Grassian V.H. Determining accurate kinetic parameters of potentially important heterogeneous atmospheric reactions on solid particle surfaces using a Knudsen cell reactor // J. Phys. Chem. A. – 2000. – V. 104, N 4. – P. 819–829.

Karagulian F. The heterogeneous interaction of trace gases on mineral dust and soot: Kinetics and mechanism: PhD thesis: No. 3422. – Lausanne, Switzerland: EPFL, 2006. – 202 p.

Keyser L.F., Moore S.B., Leu M.-T. Surface reaction and pore diffusion in flow-tube reactors // J. Phys. Chem. – 1991. – V. 95. – P. 5496–5502.

Богилло В.И. Кинетика реакций летучих примесей с поверхностью компонентов атмосферных аэрозолей // Химия, физика и технология поверхности. – 2009. – № 15. – С. 4–14.

Thiele E.W. Relation between catalytic activity and size of particles // Ind. Eng. Chem. – 1939. – V. 31. – P. 916–920.

Cunningham R.E., Williams R.J.J. Diffusion in Gases and Porous media. – New York: Plenum Press, 1980. – 278 p.

Moldrup P., Olesen T., Rolston D.E., Yamaguchi T. Modeling diffusion and reaction in soil: VII. Predicting gas and ion diffusivity in undisturbed and sieved soils // Soil. Sci. – 1997. – V. 162. – P. 632–640.

Krueger B.J., Grassian V.H., Cowin J.P., Laskin A. Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle morphology // Atmos. Environ. – 2004. – V. 38. – P. 6253–6261.

Al-Abadleh H.A., Kreuger B.J., Ross J.L., Grassian V.H. Phase transitions in calcium nitrate thin film // Chem. Commun. – 2003. – V. 22 – P. 2796–2797.

Diamond S. Pore size distributions in clays // Clays Clay Miner. – 1970. – V. 18. – P. 7–23.

Price G.J., Ansari D.M. An inverse gas chromatography study of calcinations and surface modification of kaolinite clays // Phys. Chem. Chem. Phys. – 2003. – V. 5. – P. 5552–5557.

Pokrovskiy V.A., Bogillo V.I., Dabrowski A. Adsorption and chemisorption of organic pollutants on the solid aerosols surface // Adsorption and its Application in Industry and Environmental Protection / Ed. A. Dabrowski. – Amsterdam: Elsevier, 1999. – P. 571–634.

Rockne K.J., Taghon G.L., Kosson D.S. Pore structure of soot deposits from several combustion sources // Chemosphere – 2000. – V. 41. – P. 1125-1135.

Xiong C., Friedlander S.K. Morphological properties of atmospheric aerosol aggregates // Proc. Nat. Acad. Sci. U.S.A. – 2001. – V. 98, N 21. – P. 11851–11856.

Alastuey A., Querol X., Castillo S. et al. Characterization of TSP and PM2.5 at Izana and St. Cruz de Tenerife (Canary Islands, Spain) during a Saharan dust episode (July 2002) // Atmos. Environ. – 2005. – V. 39. – P. 4715–4728.

Ивлев Л.С., Довгалюк Ю.А. Физика атмосферных аэрозольных систем. – СПб.: НИИХ СПбГУ, 1999. – 184 c.

DeCarlo P.F., Slowik J.G., Worsnop D.R. et al. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part. 1: Theory // Aerosol Sci. Technol. – 2004. – V. 36. – P. 1185–1205.

Murr L.E., Garza K.M. Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications // Atmos. Environ. – 2009. – V. 43, N 17. – P. 2683–2692.

Posfai M., Anderson J.R., Buseck P.R., Sievering H. Soot and sulfate aerosol particles in the remote marine troposphere // J. Geophys. Res. – 1999. – V. 104, N 17. – P. 21685–21693.

Jeong G.Y., Chun Y. Nanofiber calcite in Asian dust and its atmospheric roles // Geophys. Res. Lett. – 2006. – V. 33. – doi: 10.1029/2006GL028280.

Zhang R., Khalizov A.F., Pagels J. et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing // Proc. Nat. Acad. Sci. U.S.A. – 2008. – V. 105, N 30. – P. 10291–10296.

Murr L.E., Soto K.F., Garza K.M. et al. Combustion-generated nanoparticulates in the El Paso, TX, USA, Juarez, Mexico Metroplex: their comparative characterization and potential for adverse health effects // Int. J. Environ. Res. Public Health. – 2006. – V. 3, N 1. – P. 48–66.

Shandilya K.K., Kumar A. Morphology of single inhalable particle inside public transit biodiesel fueled bus // J. Environ. Sci. – 2010. – V. 22, N 2. – P. 263–270.

Mogo S., Cachorro V.E., de Frutos A.M. Morphological, chemical and optical characterization of aerosols in the urban atmosphere of Valladolid // Atmos. Chem. Phys. – 2005. – V. 5. – P. 2739–2748.

Stoeckli F., Centeno T.A. On the determination of surface areas in activated carbons // Carbon. – 2005. – V. 43, N 6. – P. 1184–1190.

Aylmore L.A.G. Gas adsorption in clay mineral systems// Clays Clay Miner. – 1974. – V. 22. – P. 175–183.

Blum A.E., Eberl D.D. Measurement of clay surface area by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance // Clays Clay Miner. – 2004. – V. 52, N 5. – P. 589–602.

Богилло В.И. Адсорбционные равновесия летучих органических соединений на поверхности компонентов атмосферных аэрозолей // Химия, физика и технология поверхности. – 2008. – № 14. – С. 129–139.

Derouane E.G., Andre J.-M., Lukas A.A. Surface curvature effects in physadsorption and catalysis by microporous solids and molecular sieves // J. Catal. – 1988. – V. 110, N 1. – P. 58–73.

Singh G.S., Lal D., Tripathi V.S. Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques // J. Chromatogr. A. – 2004. – V. 1036. – P. 189–195.

Авгуль Н.Н., Киселев А.В., Пошкус Д.П. Адсорбция газов и паров на однородных поверхностях. – Москва: Химия, 1975. – 384 c.




Copyright (©) 2010 V.I. Bogillo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.