Хімія, фізика та технологія поверхні, 2015, 6 (1), 97-121.

Матричний і об’ємний синтез, активація та функціоналізація нанопористих вуглецевих адсорбентів



DOI: https://doi.org/10.15407/hftp06.01.097

N. D. Shcherban, V. G. Ilyin

Анотація


Проаналізовано умови та особливості здійснення матричного та об’ємного синтезу вуглецевих нанопористих адсорбентів, способи активації вуглецевих матеріалів з метою одержання високопористих зразків для застосування в різних галузях (адсорбція, каталіз, створення суперконденсаторів тощо). Узагальнено наявні дані щодо функціоналізації вуглецевих нанопористих матеріалів, зокрема допуванням їх гетероатомами (N, P, B тощо).

Ключові слова


пористі вуглецеві матеріали; наноструктура; матричний синтез; темплат; активація; функціоналізація

Повний текст:

PDF

Посилання


1. Sakintuna B., Yürüm Y. Templated porous carbons: a review article. Industrial & Engineering Chemistry Research. 2005. 44(9): 2893.   https://doi.org/10.1021/ie049080w

2. Kyotani T. Control of pore structure in carbon. Carbon. 2000. 38(2): 269.  https://doi.org/10.1016/S0008-6223(99)00142-6

3. Foley H.C. Carbogenic molecular sieves: synthesis, properties and applications. Microporous Mater. 1995. 4(6): 407.  https://doi.org/10.1016/0927-6513(95)00014-Z

4. Subramoney S. Novel nanocarbons – structure, properties, and potential applications. Adv. Mater. 1998. 10(15): 1157.  https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1157::AID-ADMA1157>3.0.CO;2-N

5. Villar-Rodil S., Suarez-Garcia F., Paredes J.I. Martinez-Alonso A., Tascon J.M.D. Activated carbon materials of uniform porosity from polyaramid fibers. Chem. Mater. 2005. 17(24): 5893.   https://doi.org/10.1021/cm051339t

6. Xia Y. D., Mokaya R. Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv. Mater. 2004. 16(11): 886.   https://doi.org/10.1002/adma.200306448

7. Lee J., Kim J., Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 2006. 18(16): 2073.  https://doi.org/10.1002/adma.200501576

8. Burket C.L., Rajagopalan R., Foley H.C. Synthesis of nanoporous carbon with pre-graphitic domains. Carbon. 2007. 45(11): 2307.  https://doi.org/10.1016/j.carbon.2007.06.023

9. Ryoo R., Joo S.H., Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B. 1999. 103(37): 7743.   https://doi.org/10.1021/jp991673a

10. Liang C., Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Amer. Chem. Soc. 2006. 128(16): 5316.   https://doi.org/10.1021/ja060242k

11. Yoon S.B., Kim J.Y., Yu J.S. A direct template synthesis of nanoporous carbons with high mechanical stability using as-synthesized MCM-48 hosts. Chem. Commun. 2002. 14: 1536.   https://doi.org/10.1039/b202307p

12. Kim J., Lee J., Hyeon T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon. 2004. 42(12): 2711.   https://doi.org/10.1016/j.carbon.2004.06.018

13. Meng Y., Gu D., Zhang F., Shi Y., Yang H., Li Zh., Yu Ch., Tu B., Zhao D. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Ang. Chem. 2005. 117(43): 7215.   https://doi.org/10.1002/ange.200501561

14. Han S., Kim M., Hyeon T. Direct fabrication of mesoporous carbons using in-situ polymerized silica gel networks as a template. Carbon. 2003. 41(8): 1525.   https://doi.org/10.1016/S0008-6223(03)00072-1

15. Hu Q., Pang J., Wu Z., Lu Y. Tuning pore size of mesoporous carbon via confined activation process. Carbon. 2006. 44(7): 1349.  https://doi.org/10.1016/j.carbon.2005.11.021

16. Li Z., Jaroniec M. Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. J. Am. Chem. Soc. 2001. 123(37): 9208.  https://doi.org/10.1021/ja0165178

17. Kawashima D. Aihara T., Kobayashi Y. Kyotani T., Tomita A. Preparation of mesoporous carbon from organic polymer/silica nanocomposite. Chem. Mater. 2000. 12(11): 3397.   https://doi.org/10.1021/cm000435l

18. Pang J., Ford C., Tan G., McPherson G., John V.T., Lu Yu. Synthesis of mesoporous carbon using enzymatically polymerized polyphenolic precursor and simultaneously assembled silica template. Microporous Mesoporous Mater. 2005. 85(3): 293. https://doi.org/10.1016/j.micromeso.2005.06.030

19. Yoon S.B., Chai G.S., Kang S.K., Yu J.-S., Gierszal K.P., Jaroniec M. Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. J. Amer. Chem. Soc. 2005. 127(12): 4188.   https://doi.org/10.1021/ja0423466

20. Ryoo R., Joo S.H., Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B. 1999. 103(37): 7743.   https://doi.org/10.1021/jp991673a

21. Joo S.H., Choi S.J., Oh I., Kwak J., Liu Zh., Terasaki O., Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature. 2001. 412(6843): 169.   https://doi.org/10.1038/35084046

22. Oh S. M., Kim K., Lee J., Yoon S., Hyeon T. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem. Commun. 1999. 21: 2177.

23. Lu A.H., Schüth F. Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv. Mater. 2006. 18(14): 1793.  https://doi.org/10.1002/adma.200600148

24. Bansal C.R., Donnet J.B., Stoeckli F. Active Carbon. (New York: Marcel Dekker, 1988).

25. Kyotani T. Control of pore structure in carbon. Carbon. 2000. 38(2): 269.  https://doi.org/10.1016/S0008-6223(99)00142-6

26. Miura K., Hayashi J., Hashimoto K. Production of molecular sieving carbon through carbonization of coal modified by organic additives. Carbon. 1991. 29(4): 653.   https://doi.org/10.1016/0008-6223(91)90133-4

27. Nakagawa H., Watanabe K., Harada Y., Miura K. Control of micropore formation in the carbonized ion exchange resin by utilizing pillar effect. Carbon. 1999. 37(9): 1455.   https://doi.org/10.1016/S0008-6223(99)00008-1

28. Cheng F., Liang J., Zhao J., Tao Zh., Chen J. Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem. Mater. 2008. 20(5): 1889.   https://doi.org/10.1021/cm702816x

29. Oya A., Yoshida S., Alcaniz-Monge J., Linares-Solano A. Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon. 1995. 33(8): 1085.   https://doi.org/10.1016/0008-6223(95)00054-H

30. Khalili N.R., Campbell M., Sandi G., Golas J. Production of micro- and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation. Carbon. 2000. 38(14): 1905.   https://doi.org/10.1016/S0008-6223(00)00043-9

31. Ozaki J., Endo N., Ohizumi W. Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon. 1997. 35(7): 1031. https://doi.org/10.1016/S0008-6223(97)89878-8

32. Tamon H., Ishizaka H., Araki T. Okazaki M. Control of mesoporous structure of organic and carbon aerogels. Carbon. 1998. 36(9): 1257.  https://doi.org/10.1016/S0008-6223(97)00202-9

33. Li Z., Jaroniec M. Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. J. Am. Chem. Soc. 2001. 123(37): 9208.  https://doi.org/10.1021/ja0165178

34. Li Z., Jaroniec M. Mesoporous carbons synthesized by imprinting ordered and disordered porous structures of silica particles in mesophase pitch. J. Phys. Chem. B. 2004. 108(3): 824.   https://doi.org/10.1021/jp0368233

35. Li Z., Jaroniec M., Lee Y.J., Radovic L.R. High surface area graphitized carbon with uniform mesopores synthesised by a colloidal imprinting method. Chem. Commun. 2002. 13: 1346.   https://doi.org/10.1039/b200702a

36. Günther D., Beckmann J., Schöneich M., Schmidt P., Klepel O. Porous concrete as a template for the synthesis of porous carbon materials. Carbon. 2012. 50(8): 3096.   https://doi.org/10.1016/j.carbon.2012.02.039

37. Lv Y., Gan L., Liu M., Xiong W., Xu Z., Zhu D., Wright D.S. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources. 2012. 209: 152. https://doi.org/10.1016/j.jpowsour.2012.02.089

38. Fuertes A.B. Template synthesis of mesoporous carbons with a controlled particle size. J. Mater. Chem. 2003. 13(12): 3085.  https://doi.org/10.1039/b307373d

39. Kyotani T. Synthesis of various types of nano carbons using the template technique. Bull. Chem. Soc. Japan. 2006. 79(9): 1322.  https://doi.org/10.1246/bcsj.79.1322

40. Wan Y., Shi Y., Zhao D. Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem. Mater. 2007. 20(3): 932.  https://doi.org/10.1021/cm7024125

41. Schüth F. Endo-and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int. Ed. 2003. 42(31): 3604.  https://doi.org/10.1002/anie.200300593

42. Thomas A., Goettmann F., Antonietti M. Hard templates for soft materials: creating nanostructured organic materials. Chem. Mater. 2008. 20(3): 738.   https://doi.org/10.1021/cm702126j

43. Knox J.H., Kaur B., Millward G.R. Structure and performance of porous graphitic carbon in liquid chromatography. J. Chromatogr. A. 1986. 352: 3.   https://doi.org/10.1016/S0021-9673(01)83368-9

44. Vix-Guterl C., Saadallah S., Vidal L., Reda M., Parmentierb J., Patarin J. Template synthesis of a new type of ordered carbon structure from pitch. J. Mater. Chem. 2003. 13(10): 2535.   https://doi.org/10.1039/b305295h

45. Kyotani T., Nagai T., Inoue S., Tomita A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mater. 1997. 9(2): 609.   https://doi.org/10.1021/cm960430h

46. Kyotani T., Ma Z., Tomita A. Template synthesis of novel porous carbons using various types of zeolites. Carbon. 2003. 41(7): 1451.  https://doi.org/10.1016/S0008-6223(03)00090-3

47. Rodriguez-Mirasol J., Cordero T., Radovic L.R., Rodriguez J.J. Structural and textural properties of pyrolytic carbon formed within a microporous zeolite template. Chem. Mater. 1998. 10(2): 550.   https://doi.org/10.1021/cm970552p

48. Ma Z., Kyotani T., Tomita A. Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite. Chem. Commun. 2000. 23: 2365.   https://doi.org/10.1039/b006295m

49. Jun S., Joo S.H., Ryoo R., Kruk M., Jaroniec M., Liu Zh., Ohsuna T., Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Amer. Chem. Soc. 2000. 122(43): 10712.   https://doi.org/10.1021/ja002261e

50. Xia Y. D., Mokaya R. Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv. Mater. 2004. 16(11): 886.   https://doi.org/10.1002/adma.200306448

51. Xia Y., Yang Z., Mokaya R. Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica. J. Phys. Chem. B. 2004. 108(50): 19293.   https://doi.org/10.1021/jp046142n

52. Lu A., Kiefer A., Schmidt W., Schüth F. Synthesis of polyacrylonitrile-based ordered meso-porous carbon with tunable pore structures. Chem. Mater. 2004. 16(1): 100.   https://doi.org/10.1021/cm031095h

53. Alvarez S., Fuertes A.B. Template synthesis of mesoporous carbons with tailorable pore size and porosity. Carbon. 2004. 42(2): 433.  https://doi.org/10.1016/j.carbon.2003.10.035

54. Zakhidov A.A., Baughman R.H., Iqbal Z., Cui Ch., Khayrullin I., Dantas S.O., Marti J., Ralchenko V.G. Carbon structures with three-dimensional periodicity at optical wavelengths. Science. 1998. 282(5390): 897.   https://doi.org/10.1126/science.282.5390.897

55. Yu J.S., Kang S., Yoon S.B., Chai G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J. Amer. Chem. Soc. 2002. 124(32): 9382. https://doi.org/10.1021/ja0203972

56. Baumann T.F., Satcher J.H. Homogeneous incorporation of metal nanoparticles into ordered macroporous carbons. Chem. Mater. 2003. 15(20): 3745.   https://doi.org/10.1021/cm0343960

57. Álvaro M., Atienzar P., Bourdelande J.L. Garcia H. Photochemistry of single wall carbon nanotubes embedded in a mesoporous silica matrix. Chem. Commun. 2002. 24: 3004.    https://doi.org/10.1039/B209225P 

58. Su F., Zhao X.S., Lv L. Zhou Z. Synthesis and characterization of microporous carbons templated by ammonium-form zeolite Y. Carbon. 2004. 42(14): 2821.   https://doi.org/10.1016/j.carbon.2004.06.028

59. Meyers C.J., Shah S.D., Patel S.C., Sneeringer R.M., Bessel C.A., Dollahon N.R., Leising R.A., Takeuchi E.S. Templated synthesis of carbon materials from zeolites (Y, beta, and ZSM-5) and a montmorillonite clay (K10): Physical and electrochemical characterization. J. Phys. Chem. B. 2001. 105(11): 2143.https://doi.org/10.1021/jp0029663

60. Yang Z., Xia Y., Mokaya R. Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates. Microporous Mesoporous Mater. 2005. 86(1): 69.   https://doi.org/10.1016/j.micromeso.2005.05.055

61. Hou P.X., Orikasa H., Yamazaki T., Matsuoka K., Tomita A., Setoyama N., Fukushima Y., Kyotani T.Synthesis of nitrogen-containing micropo-rous carbon with a highly ordered structure and effect of nitrogen doping on H2O adsorption. Chem. Mater. 2005. 17(20): 5187.   https://doi.org/10.1021/cm051094k

62. Liang C., Li Z., Dai S. Mesoporous carbon materials: synthesis and modification. Angew. Chem. Int. Ed. 2008. 47(20): 3696.  https://doi.org/10.1002/anie.200702046

63. Lee J., Kim J., Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 2006. 18(16): 2073.  https://doi.org/10.1002/adma.200501576

64. Stein A., Wang Z., Fierke M.A. Functiona-lization of porous carbon materials with designed pore architecture. Adv. Mater. 2009. 21(3): 265.  https://doi.org/10.1002/adma.200801492

65. Yang H., Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. J. Mater. Chem. 2005. 15(12): 1217.  https://doi.org/10.1039/b414402c

66. Xia Y., Yang Z., Mokaya R. Templated nanoscale porous carbons. Nanoscale. 2010. 2(5): 639.  https://doi.org/10.1039/b9nr00207c

67. Lysenko N.D., Shvets A.V., Yaremov P.S., Il'in V.G. Effect of the conditions of the matrix carbonization of sucrose on the structure and adsorption properties of mesoporous carbon materials. Theor. Exp. Chem. 2008. 44(6): 374.   https://doi.org/10.1007/s11237-009-9055-z

68. Lysenko N.D., Opanasenko M.V., Yaremov P.S., Shvets A.V., Il'in V.G. Structural and sorption properties of carbon replicas obtained by matrix carbonization of organic precursors in SBA-15 and KIT-6. Theor. Exp. Chem. 2010. 46(1): 51.   https://doi.org/10.1007/s11237-010-9120-7

69. Lysenko N.D., Yaremov P.S., Shvets A.V., Il'in V.G. Effect of the chemical and structural modification of CMK-3 mesoporous carbon molecular sieve on hydrogen adsorption. Theor. Exp. Chem. 2009. 45(6): 380.   https://doi.org/10.1007/s11237-010-9110-9

70. Lillo-Ródenas M. A., Cazorla-Amorós D., Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon. 2003. 41(2): 267.   https://doi.org/10.1016/S0008-6223(02)00279-8

71. Carvalho A.P., Gomes M., Mestre A.S., de Carvalho M.B. Activated carbons from cork waste by chemical activation with K2CO3: Application to adsorption of natural gas components. Carbon. 2004. 42(3): 672.   https://doi.org/10.1016/j.carbon.2003.12.075

72. Hayashi J., Uchibayashi M., Horikawa T., Muroyama K., Gomes V.G. Synthesizing activated carbons from resins by chemical activation with K2CO3. Carbon. 2002. 40(15): 2747.   https://doi.org/10.1016/S0008-6223(02)00151-3

73. Molina-Sabio M., Rodrıguez-Reinoso F. Role of chemical activation in the development of carbon porosity. Colloids Surf., A. 2004. 241(1): 15.   https://doi.org/10.1016/j.colsurfa.2004.04.007

74. Yorgun S., Vural N., Demiral H. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater. 2009. 122(1): 189.   https://doi.org/10.1016/j.micromeso.2009.02.032

75. Bagheri N., Abedi J. Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chem. Eng. Res. Des. 2009. 87(8): 1059.   https://doi.org/10.1016/j.cherd.2009.02.001

76. Qian Q., Machida M., Tatsumoto H. Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresour. Technol. 2007. 98(2): 353.   https://doi.org/10.1016/j.biortech.2005.12.023

77. Bouchelta C., Medjram M.S., Bertrand O., Bellat J.-P. Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis. 2008. 82(1): 70.   https://doi.org/10.1016/j.jaap.2007.12.009

78. Guo Y., Rockstraw D.A. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon. 2006. 44(8): 1464.   https://doi.org/10.1016/j.carbon.2005.12.002

79. Nakagawa Y., Molina-Sabio M., Rodríguez-Reinoso F. Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Microporous Mesoporous Mater. 2007. 103(1): 29.  https://doi.org/10.1016/j.micromeso.2007.01.029

80. Wang H., Zhong Y., Li Q., Yang J., Dai Q. Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes. J. Phys. Chem. Solids. 2008. 69(10): 2420.   https://doi.org/10.1016/j.jpcs.2008.04.034

81. Rodríguez-Reinoso F., Nakagawa Y., Silvestre-Albero J., Juarez-Galan J.M., Molina-Sabio M. Correlation of methane uptake with microporosity and surface area of chemically activated carbons. Microporous Mesoporous Mater. 2008. 115(3): 603.   https://doi.org/10.1016/j.micromeso.2008.03.002

82. Bhat V.V., Contescu C.I., Gallego N.C.,Baker F.S. Atypical hydrogen uptake on chemically-activated, ultramicroporous carbon. Carbon. 2010. 48(5): 1331.   https://doi.org/10.1016/j.carbon.2009.12.001

83. Armandi M., Bonelli B., Geobaldo F.,Garrone E. Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Microporous Mesoporous Mater. 2010. 132(3): 414.   https://doi.org/10.1016/j.micromeso.2010.03.021

84. Grzyb B., Hildenbrand C., Berthon-Fabry S., Achard P. Functionalisation and chemical charac-terisation of cellulose-derived carbon aerogels. Carbon. 2010. 48(8): 2297.   https://doi.org/10.1016/j.carbon.2010.03.005

85. Xu B., Peng L., Wang G., Cao G., Wu F. Easy synthesis of mesoporous carbon using nano-CaCO3 as template. Carbon. 2010. 48(8): 2377.  https://doi.org/10.1016/j.carbon.2010.03.003

86. Shcherban N.D., Yaremov P.S., Ilyin V.G. Ovcharova M.V. Influence of the method of activation on the structural and sorption properties of the products of carbonization of sucrose. J. Anal. Appl. Pyrolysis. 2014. 107: 155.   https://doi.org/10.1016/j.jaap.2014.02.016

87. Murzin D.Y., Murzina E.V., Tokarev A., Shcherban N.D., Warna J., Salmi T. Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. Catal. Today. 2014. 257(2): 169.

88. Ternovoy K.S. Hemosorption in the treatment of acute radiation sickness. (Kyiv: Naukova dumka, 1983). [in Russian].

89. Kartel N.T. The possibilities of therapeutic action of medical sorbents based on activated carbon. Therapy Efferent. 1995. 1(4): 11.

90. Strelko V.V. The mechanism of influence on the chemistry of hetero active carbons. Selective adsorption and catalysis on active carbons and inorganic ion exchangers. (Kyiv: Naukova dumka, 2008). [in Russian].

91. Leon C.A., Leon J.D., Radovic L.R. Chemistry and Physics of Carbon. V. 24. (New York, Basel, Hong Kong: M. Dekker, 1992).

92. Tarkovskaya I.A. Oxidized coal. (Kyev: Naukova dumka, 1981). [in Russian].

93. Mrozowski S. Electronic properties and band model of carbons. Carbon. 1971. 9(2): 97.  https://doi.org/10.1016/0008-6223(71)90123-0

94. Strelko V.V. The effect of nitrogen in the carbon matrix on the donor-acceptor and catalytic activity of activated carbons in electron transfer reactions. Theor. Exp. Chem. 1999. 35(6): 315.   https://doi.org/10.1007/BF02522788

95. Strelko V.V., Kuts V.S., Thrower P.A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon. 2000. 38(10): 1499.   https://doi.org/10.1016/S0008-6223(00)00121-4

96. Stavitskaya S.S. The acid-base catalysis on oxidized coals. In: Selective adsorption and catalysis on active carbons and inorganic ion exchangers. (Kyiv: Naukova dumka, 2008). [in Russian].

97. Skripnik Z.D., Strazhesko D.N. Theory ion exchange and chromatography. (Moscow: Nauka, 1968). [in Russian].

98. Strazhesko D.N. Electrical properties of activated carbons and the mechanism of the processes occurring on the surface. Adsorption and adsorbents. 1976. 4: 3. [in Russian].

99. Strazhesko D.N., Skripnik Z.D., Tarkovskaya I.A. Carbon adsorbents and their application in industry. Part 1. (Perm', 1969). [in Russian].

100. Tarkovskaya I.A., Stavitskaya S.S. Properties and application of oxidized coal. Russ. Chem. J. 1995. 39(6): 44. [in Russian].

101. Tarkovskaya I.A., Stavitskaya S.S. Quantity of sorbed ions and forms of their binding to carbon surface as factors influencing catalytic activity in esterification and hydrolysis reactions. Theor. Exp. Chem. 1997. 33(3): 146.   https://doi.org/10.1007/BF02765913

102. Tarkovskaya I.A., Stavitskaya S.S., Tikhonova L.P. Metallozameschennye carbon catalysts for the purification and analysis of natural waters and sewage. Khimiya i Tekhnologiya Vody. 1997. 19(2): 143. [in Russian].

103. Tarkovskaya I.A., Stavitskaya S.S. The catalytic action of the metal-carbon materials in the reactions of acid-type. Ukr. Chem. J. 1998. 64(2): 96.

104. Stavitskaya S.S., Tarkovskaya I.A., Petrenko T.P. Main factors determining the catalytic properties of active carbons. Theor. Exp. Chem. 1996. 32(6): 293. https://doi.org/10.1007/BF01374119

105. Wu X., Radovic L.R. Ab initio molecular orbital study on the electronic structures and reactivity of boron-substituted carbon. J. Phys. Chem. A. 2004. 108(42): 9180.   https://doi.org/10.1021/jp048212w

106. Morita T., Takami N. Characterization of oxidized boron-doped carbon fiber anodes for Li-ion batteries by analysis of heat of immersion. Electrochimica Acta. 2004. 49(16): 2591.https://doi.org/10.1016/j.electacta.2004.02.010

107. Shiraishi S., Kibe M., Yokoyama T., Kurihara H., Patel N., Oya A., Kaburagi Y., Hishiyama Y. Electric double layer capacitance of multi-walled carbon nanotubes and B-doping Effect. Appl. Phys. A. 2006. 82(4): 585.   https://doi.org/10.1007/s00339-005-3399-6

108. Zhong D.H., Sano H., Uchiyama Y., Kobayashi K. Effect of low-level boron doping on oxidation behavior of polyimide-derived carbon films. Carbon. 2000. 38(8): 1199.    https://doi.org/10.1016/S0008-6223(99)00245-6

109. Jeong Y., Mike Chung T.C. The synthesis and characterization of a super-activated carbon containing substitutional boron (BCx) and its applications in hydrogen storage. Carbon. 2010. 48(9): 2526.   https://doi.org/10.1016/j.carbon.2010.03.029

110. Arutyunyan N.R., Arenal R., Obraztsova E.D., Grebenyukov V.V. Incorporation of boron and nitrogen in carbon nanomaterials and its influence on their structure and opto-electronical properties. Carbon. 2012. 50(3): 791.   https://doi.org/10.1016/j.carbon.2011.09.035

111. Wang D.W., Li F., Chen Z.G., Lu G.Q., Cheng H.-M. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater. 2008. 20(22): 7195.   https://doi.org/10.1021/cm801729y

112. Paraknowitsch J.P., Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013. 6(10): 2839.   https://doi.org/10.1039/c3ee41444b

113. Wang L., Yang F.H., Yang R.T. Hydrogen storage properties of B- and N-doped microporous carbon. AIChE Journal. 2009. 55(7): 1823.  https://doi.org/10.1002/aic.11851

114. Cao Y., Yu H., Tan J., Peng F., Wang H., Li J., Zheng W., Wong N.-B. Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon. 2013. 57: 433.   https://doi.org/10.1016/j.carbon.2013.02.016

115. Zhai X., Song Y., Liu J., Lia P., Zhonga M., Maa Ch., Wanga H., Guo Q., Zhi L. In-situ Preparation of boron-doped carbons with ordered mesopores and enhanced electrochemical properties in supercapa-citors. J. Electrochem. Soc. 2012. 159(12): E177.   https://doi.org/10.1149/2.047212jes

116. Bo X., Guo L. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution. Phys. Chem. Chem. Phys. 2013. 15(7): 2459.   https://doi.org/10.1039/c2cp43541a

117. Shcherban N.D., Filonenko S.M., Yaremov P.S. Synthesis and properties of B-containing nanoporous carbon. In: "Nanotechnology and nanomaterials" (NANO–2013). International Research and Practice Conference. (Bukovel, Ukraine, 25 August – 1 September 2013). P. 160.

118. Lowell C.E. Solid solution of boron in graphite. J. Amer. Ceramic Soc. 1967. 50(3): 142.  https://doi.org/10.1111/j.1151-2916.1967.tb15064.x

119. Radovic L.R., Karra M., Skokova K., Thrower P.A.The role of substitutional boron in carbon oxidation. Carbon. 1998. 36(12): 1841.  https://doi.org/10.1016/S0008-6223(98)00156-0

120. Kim J., Choi M., Ryoo R. Synthesis of mesoporous carbons with controllable N-content and their supercapacitor properties. Bull. Korean Chem. Soc. 2008. 29(2): 413.    https://doi.org/10.5012/bkcs.2008.29.2.413

121. Hulicova-Jurcakova D., Seredych M., Jin Y., Lu G.Q., Bandosz T.J. Specific anion and cation capacitance in porous carbon blacks. Carbon. 2010. 48(6): 1767.   https://doi.org/10.1016/j.carbon.2010.01.020

122. Frackowiak E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007. 9(15): 1774.  https://doi.org/10.1039/b618139m

123. Lota G., Grzyb B., Machnikowska H., Frackowiak E. Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem. Phys. Lett. 2005. 404(1): 53.   https://doi.org/10.1016/j.cplett.2005.01.074

124. Hulicova D., Kodama M., Hatori H. Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem. Mater. 2006. 18(9): 2318.   https://doi.org/10.1021/cm060146i

125. Lu A., Kiefer A., Schmidt W., Schüth F. Synthesis of polyacrylonitrile-based ordered meso-porous carbon with tunable pore structures. Chem. Mater. 2004. 16(1): 100.   https://doi.org/10.1021/cm031095h

126. Shin Y., Fryxell G.E., Johnson Ii C.A., Haley M.M. Templated synthesis of pyridine functi-onalized mesoporous carbons through the cyclotrimerization of diethynylpyridines. Chem. Mater. 2007. 20(3): 981.   https://doi.org/10.1021/cm070979o

127. Vinu A., Ariga K., Mori T., Nakanishi T., Hishita S., Golberg D., Bando Y. Preparation and characterization of well-ordered hexago-nal mesoporous carbon nitride. Adv. Mater. 2005. 17(13): 1648.   https://doi.org/10.1002/adma.200401643

128. Vinu A., Terrones M., Golberg D., Hishita Sh., Ariga K., Mori T. Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chem. Mater. 2005. 17(24): 5887.   https://doi.org/10.1021/cm051780j

129. Yang Z., Xia Y., Sun X., Mokaya R. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. J. Phys. Chem. B. 2006. 110(37): 18424.   https://doi.org/10.1021/jp0639849

130. Xia Y., Mokaya R. Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem. Mater. 2005. 17(6): 1553.  https://doi.org/10.1021/cm048057y

131. Yang C.M., Weidenthaler C., Spliethoff B., Mayanna M., Schüth F. Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem. Mater. 2005. 17(2): 355.    https://doi.org/10.1021/cm049164v

132. Hao G.P., Li W.C., Qian D., Lu A.-H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv. Mater. 2010. 22(7): 853.  https://doi.org/10.1002/adma.200903765

133. Wei J., Zhou D., Sun Z. Deng Y., Xia Y., Zhao D. A Controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 2013. 23(18): 2322.   https://doi.org/10.1002/adfm.201202764

134. White R.J., Antonietti M., Titirici M.M. Naturally inspired nitrogen doped porous carbon. J. Mater. Chem. 2009. 19(45): 8645.  https://doi.org/10.1039/b911528e

135. Horikawa T., Sakao N., Sekida T., Hayashi J., Do D.D., Katoh M. Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption. Carbon. 2012. 50(5): 1833.   https://doi.org/10.1016/j.carbon.2011.12.033

136. Guo H., Gao Q. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J. Power Sources. 2009. 186(2): 551.  https://doi.org/10.1016/j.jpowsour.2008.10.024

137. Xu B., Hou S., Cao G., Wu F., Yang Yu. Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J. Mater. Chem. 2012. 22(36): 19088.   https://doi.org/10.1039/c2jm32759g

138. Chen X.Y., Chen C., Zhang Z.J., Xie D.H., Deng X., Liu J.W. Nitrogen-doped porous carbon for supercapacitor with long-term electro-chemical stability. J. Power Sources. 2013. 230: 50.   https://doi.org/10.1016/j.jpowsour.2012.12.054

139. Xu B., Duan H., Chu M., Cao G., Yang Yu. Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J. Mater. Chem. A. 2013. 1(14): 4565.  https://doi.org/10.1039/c3ta01637d

140. Kang K.Y., Lee B.I., Lee J.S. Hydrogen adsorption on nitrogen-doped carbon xerogels. Carbon. 2009. 47(4): 1171.  https://doi.org/10.1016/j.carbon.2009.01.001

141. Gorgulho H.F., Gonçalves F., Pereira M.F.R., Figueiredo J.L. Synthesis and characterization of nitrogen-doped carbon xerogels. Carbon. 2009. 47(8): 2032.   https://doi.org/10.1016/j.carbon.2009.03.050

142. Zhuravsky S., Kartel N., Laszlo K., Tarasenko Yu. Obtaining and pore structure of nitrogen. containing syntiietic carbons on tiie basis of copolymer of styrene and divinylbenzene. Surface. 2009. 1(16): 78. [in Russian].

143. Shcherban N.D., Filonenko S.M., Yaremov P.S., Dyadyun V.S. Synthesis and physical–chemical properties of N-containing nanoporous carbons. J. Mater. Sci. 2014. 49(12): 4354.   https://doi.org/10.1007/s10853-014-8133-3

144. Okada K., Yamamoto N., Kameshima Y., Yasumori A. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation. J. Colloid Int. Sci. 2003. 262(1): 179.   https://doi.org/10.1016/S0021-9797(03)00107-3

145. Benaddi H., Legras D., Rouzaud J.N., Beguin F. Influence of the atmosphere in the chemical activation of wood by phosphoric acid. Carbon. 1998. 36(3): 306.   https://doi.org/10.1016/S0008-6223(98)80123-1

146. Toles C.A., Marshall W.E., Johns M.M. Surface functional groups on acid-activated nutshell carbons. Carbon. 1999. 37(8): 1207.  https://doi.org/10.1016/S0008-6223(98)00315-7

147. Molina-Sabio M., Rodriguez-Reinoso F., Caturla F., Sellés M.J. Porosity in granular carbons activated with phosphoric acid. Carbon. 1995. 33(8): 1105.   https://doi.org/10.1016/0008-6223(95)00059-M

148. MacDonald J.A.F., Quinn D.F. Adsorbents for methane storage made by phosphoric acid activation of peach pits. Carbon. 1996. 34(9): 1103.  https://doi.org/10.1016/0008-6223(96)00062-0

149. Girgis B.S., Ishak M.F. Activated carbon from cotton stalks by impregnation with phosphoric acid. Mater. Lett. 1999. 39(2): 107.  https://doi.org/10.1016/S0167-577X(98)00225-0

150. Seron A., Benaddi H., Beguin F., Frackowiak E., Bretelle J.L., Thiry M.C., Bandosz T.J., Jagiello J., Schwarz J.A. Sorption and desorption of lithium ions from activated carbons. Carbon. 1996. 34(4): 481.   https://doi.org/10.1016/0008-6223(95)00200-6

151. Puziy A.M., Poddubnaya O.I., Martınez-Alonso A., Suárez-García F., Tascón J.M.D. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon. 2002. 40(9): 1493.   https://doi.org/10.1016/S0008-6223(01)00317-7

152. Puziy A.M., Poddubnaya O.I., Martínez-Alonso A. Surface chemistry of phospho-rus-containing carbons of lignocellulosic origin. Carbon. 2005. 43(14): 2857.   https://doi.org/10.1016/j.carbon.2005.06.014

153. Sych N.V., Trofymenko S.I., Vikarchuk V.M., Puziy A.M., Aktaş Z., Yağmur E., Kovtun M.F. Heavy Metals Adsorption with Active Carbons Obtained by Chemical Activation of Dogwood Stone. Him. Fiz. Tehnol. Poverhni. 2011. 2(2): 213. [in Russian].

154. Sych N.V., Strelko V.V., Tsyba N.N., Puziy A.M. Effect of phosphoric acid on the development of a porous structure of carbons obtained by chemical activation of corn cobs. Reports of NAS of Ukraine. 2009. 7: 144. [in Russian].

155. Lysenko N.D., Yaremov P.S., Ovcharova M.V., Ilyin V.G. Highly acidic phosphorus-containing porous carbons: synthesis and physicochemical properties. J. Mater. Sci. 2012. 47(7): 3089.   https://doi.org/10.1007/s10853-011-6142-z




DOI: https://doi.org/10.15407/hftp06.01.097

Copyright (©) 2015 N. D. Shcherban, V. G. Ilyin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.