Хімія, фізика та технологія поверхні, 2016, 7 (2), 195-201.

Фоточутливі нанокомпозити на основі нанотрубок TiО2, CdSe і оксиду графена



DOI: https://doi.org/10.15407/hftp07.02.195

I. A. Rusetskii, I. A. Slobodyanyuk, M. O. Danilov, G. Ya. Kolbasov

Анотація


Вивчено фотоелектрохімічні властивості електродів на основі наноструктури, що містить нанотрубки TiО2 і плівки CdSe, модифіковані оксидом графену. Показано, що в такій структурі забезпечується хороше зчеплення шару CdSe з підкладкою, зменшується катодний темновий струм витоку й збільшується ефективність фотоелектродів. З дослідження спектрів КРС, у яких спостерігалися лінії 2LO- і 3LO-фононів, зроблено висновок про якість модифікованих полікристалічних плівок CdSe.

Ключові слова


нанокомпозити; CdSe фотоанод; нанотрубки TiО2; оксид графену

Повний текст:

PDF (Русский)

Посилання


1. Wang G., Shen X., Yao J., Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 2009. 47(8): 2049. https://doi.org/10.1016/j.carbon.2009.03.053

2. Xin Y., Liu J., Jie X., Liu W., Liu F., Yin Y., Gua J., Zou Z. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochim. Acta. 2012. 60: 354. https://doi.org/10.1016/j.electacta.2011.11.062

3. Shao Y., Zhang S., Wang C., Nie Z., Liu J., Wang Y., Lin Y. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J. Power Sources. 2010. 195(15): 4600. https://doi.org/10.1016/j.jpowsour.2010.02.044

4. Ng Yu.H., Iwase A., Bell N.J., Kudo A., Amal R. Semiconductor / reduced graphene oxide nanocomposites derived from photocatalytic reactions. Catal. Today. 2011. 164(1): 353. https://doi.org/10.1016/j.cattod.2010.10.090

5. Lim P.S., Pandikumar A., Huang N.M., Lim H.N. Reduced graphene oxide–titania nanocomposite-modified photoanode for efficient dye-sensitized solar cells. Int. J. Energy Res. 2015. 39(6): 812. https://doi.org/10.1002/er.3307

6. Xiang Z., Zhou X., Wan G., Zhang G., Cao D. Improving energy conversion efficiency of dye-sensitized solar cells by modifying TiO2 photoanodes with nitrogen-reduced graphene oxide. ACS Sustainable Chem. Eng. 2014. 2(5): 1234. https://doi.org/10.1021/sc5000732

7. Shcherbakova L.G., Kolbasov G.Ya. Solonin Yu.M., Slobodyanyuk I.A., Rusetskii I.A. Proc. VIth Int. Conf. scientifique et méthodique (October 11-18, 2012, Djerba, Tunisia). P. 230. [In Russian].

8. Macak J.M., Hildebrand H., Marten-Jahns U., Schmuki P. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal. Chem. 2008. 621(2): 254. https://doi.org/10.1016/j.jelechem.2008.01.005

9. Danilov M.O., Slobodyanyuk I.A., Rusetskii I.A. Kolbasov G.Ya. Reduced graphene oxide: a promising electrode material for oxygen electrodes. J. Nanostruct. Chem. 2013. 3:49: 1.

10. Kolbasov G.Ya., Danilov M.O., Slobodyanyuk I.A., Rusetskii I.A. Synthesis of reduced graphene oxide from multiwalled carbon nanotubes and its electrocatalytic properties. Ukr. Khim. Zhurnal. 2014. 80(7–8): 3. [In Russian].

11. Chernokoja T.S. Ph.D. (Chem.) Thesis. (Kyiv, 1994). [In Russian].

12. Tripathy A.K., Tien H.T. Dual electrolyte-semiconductor contact CdSe electrochemical photocell. J. Appl. Electrochem. 1987. 17(5): 1100. https://doi.org/10.1007/BF01024376

13. Mikhailov S. Physics and Applications of Graphene – Experiments. (Croatia: InTech, 2011). https://doi.org/10.5772/590

14. Gurevich Yu.Ya., Pleskov Yu.V. Semiconductors photoelectrochemistry. (Moscow: Nauka, 1983). [In Russian].

15. Smyntyna V.A., Kutalova M.I., Mak V.T. (Eds.). Photoelectronics. Inter-universities scientific articles. N 17. (Odessa: Astroprint, 2008).

16. Dare-Edwards M.P., Goodenough J.B., Hamnett A., Seddon K.R., Wright R.D. Sensitisation of semiconducting electrodes with ruthenium-based dyes. Faraday Discus. Chem. Soc. 1980. 70: 285. https://doi.org/10.1039/dc9807000285

17. Grimes C.A., Mor G.K. TiO2 Nanotube Arrays: Synthesis, Properties, and Applications. (US: Springer, 2009). https://doi.org/10.1007/978-1-4419-0068-5

18. Kopidakis N., Benkstein K., J. van de Lagemaat, Frank A.J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B. 2003. 107(41): 11307. https://doi.org/10.1021/jp0304475

19. Benkstein K.D., Kopidakis N., J. van de Lagemaat, Frank A.J. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J. Phys. Chem. B. 2003. 107(31): 7759. https://doi.org/10.1021/jp022681l

20. Calzadilla O., Zapata-Torres M., Narvaez L., Jiménez S., Rábago F. Effect of annealing temperature on the crystalline quality of chemically deposited CdSe films. Sociedad Mexicana de Ciencia de Superficies y de Vacío. 2002. 14: 35.

21. Williams G., Seger B., Kamat P.V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano. 2008. 2(7): 1487. https://doi.org/10.1021/nn800251f

22. Lightcap I.V., Kosel T.H., Kamat P.V. Anchoring semiconductor andmetal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010. 10(2): 577. https://doi.org/10.1021/nl9035109

23. Kuzminskii E.V., Kolbasov G.Ya. Electrochemical systems for converting solar energy. Sol. Energy Mater. Sol. Cells. 1999. 56(2): 93. https://doi.org/10.1016/S0927-0248(98)00146-9

24. Pokhodenko V.D., Skorokhod V.V., Solonin Yu.M. (Eds.). Fundamental problems of hydrogen energy. (Kyiv: KIM, 2010). [in Ukrainian].

25. Naumovets A.G. Nanoscale systems and nanomaterials: research in Ukraine. (Kyiv: Academperiodika, 2014). [In Russian].




DOI: https://doi.org/10.15407/hftp07.02.195

Copyright (©) 2016 I. A. Rusetskii, I. A. Slobodyanyuk, M. O. Danilov, G. Ya. Kolbasov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.