Хімія, фізика та технологія поверхні, 2011, 2 (3), 221-228.

Електрохімічні дослідження і квантовохімічні розрахунки системи SinLim



S. P. Kuksenko, V. S. Kuts, Yu. А. Tarasenko, M. T. Kartel

Анотація


Ефективними, але нездійсненними в промислових літій-іонних акумуляторах, способами підвищення електрохімічних параметрів Si-електродів є обмеження заряду високими потенціалами або проведення заряду великими струмами, тобто скорочення часу перебування електрода при низьких потенціалах щодо Li+/Li0. Ці способи широко використовуються в академічних дослідженнях без урахування практичного застосування одержаних результатів. У роботі експериментально показано, що пригнічуючи кристалізацію а-SiLix в Si4Li15 і сприяючи формуванню аморфних або наноструктурованих станів сплавів літій – кремній, можна істотно покращити електрохімічні параметри кремнійвмісних електродів літій-іонних акумуляторів при заряді в режимі, який застосовується для реальних виробів. Особливості поведінки електрохімічної системи Si/Li обґрунтовані квантовохімічними розрахунками кластерних моделей сплаву SinLimзалежно від співвідношення числа атомів Si і Li. Для цього на теоретичному рівні розглянуто просторову та електронну будову нанокластерів Sin (n = 2–16) та SinLim (n = 4, 8, 12, 16; m = 2–54).

Повний текст:

PDF (Русский)

Посилання


Larcher D, Beattie S, Morcrette M, Edström K, Jumas J-C, Tarascon J-M, Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries, J. Mater. Chem., 2007, 17(36), 3759.

Inoue H, High capacity negative electrode materials next to carbon: Nexelion, International Meeting on Lithium Batteries, 18–23 June 2006, Biarritz, France.

Kasavajjula U, Wang C, Appleby A, Nano- and bulk-silicon based insertion anodes for lithium-ion secondary cells, J. Power Sources, 2007, 163(2), 1003.

Iwamatsu M, Global geometry optimization of silicon clusters using the space-fixed genetic algorithm, J. Chem. Phys., 2000, 112(24), 10976.

Li B-X, Cao P-L, Zhan S-C, Ground state structures of Sin (n = 11–25) clusters, Phys. Lett. A., 2003, 316(3–4), 252.

Zhu X L, Zeng X C, Lei Y A, Pan B, Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12–Si20, J. Chem. Phys., 2004, 120(19), 8985.

Holzapfel M, Buqa H, Krumeich F, Novák P, Petrat F-M, Veit C, Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries, Electrochem. Solid-State Lett., 2005, 8(10), A516.

Ng S-H, Wang J, Wexler D, Konstantinov K, Guo Z-P, Liu H-K, Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries, Angew. Chem. Int. Ed., 2006, 45(41), 6896.

Chan C K, Peng H, Liu G, McIlwrath K, Zhang X, Huggins R, Cui Y, High perfor-mance lithium battery anodes using silicon nanowires, Nature Nanotech., 2008, 3(1), 31.

Kuksenko S P, Tarasenko Yu A, Kovalenko I O, Kartel M T, Uglerodnoe pokrytie mikro- i nanokremniya: progress kremnievykh anodnykh materialov dlya litiy-ionnykh akkumulyatorov (A carbon coating of micro- and nanosilicon: progress of silicon anode materials for lithium-ion batteries), Khimiya, Fizyka ta Tekhnologiya Poverhni (Chemistry, Physics & Technology of Surface), 2009, 15, 144, (in Russian).

Cui L-F, Ruffo R, Chan C K, Peng H, Cui Y, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 2009, 9(1), 491.

Arie A A, Song J O, Lee J K, Structural and electrochemical properties of fullerene-coated silicon thin film as anode materials for lithium secondary batteries, Mat. Chem. Phys., 2009, 113(1), 249.

Park M.-H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J, Silicon nanotube battery anodes, Nano Lett., 2009, 9(11), 3844.

Chen L B, Xie J Y, Yu H C, Wang T H, An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries, J. Appl. Electrochem., 2009, 39(8), 1157.

Lee S-J, Lee J-K, Chung S-H, Lee H-Y, Lee S-M, Baik H-K, Stress effect on cycle properties of the silicon thin film anode, J. Power Sources., 2001, 97–98, 191.

Limthongkul P, Jang Y-I, Dudney N J, Chiang Y-M, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Materialia, 2003, 51(4), 1103.

Obrovac M N, Christensen L, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 2004, 7(5), A93.

Hatchard T D, Dahn J R, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 2004, 151(6), A838.

Li J, Dahn J R, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc., 2007, 154(3), A156.

Obrovac M N, Krause L J, Reversible cycling of crystalline silicon powder, J. Electrochem. Soc., 2007, 154(2), A103.

Xu Y H, Yin G P, Zuo P J, Geometric and electronic studies of Li15Si4 for silicon anode, Electrochim. Acta, 2008, 54(2), 341.

Chan C K, Ruffo R, Hong S S, Huggins R A, Cui Y, Structural and electrochemical study of the reaction of lithium with silicon nanowires, J. Power Sources., 2009, 189(1), 34.

Key B, Bhattacharyya R, Morcrette M, Seznéc V, Tarascon J M, Grey C P, Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries, J. Am. Chem. Soc., 2009, 131(26), 9239.

Chevrier V L, Dahn J R, First principles model of amorphous silicon lithiation, J. Electrochem. Soc., 2009, 156(6), A454.

Chevrier V L, Zwanziger J W, Dahn J R, First principles studies of silicon as a negative electrode material for lithium-ion batteries, Can. J. Phys., 2009, 87(6), 625.

Chevrier V L, Dahn J R, First principles studies of disordered lithiated silicon, J. Electrochem. Soc., 2010, 157(4), A392.

Doh C-H, Kim J-S, Jin B-S, Moon S-I, Lithium alloying potentials of silicon as anode of lithium secondary batteries, International Meeting on Lithium Batteries, June 27–July 2 2010, Montreal, Canada.

Kwon J Y, Ryu J H, Oh S M, Performance of electrochemically generated Li21Si5 phase for lithium-ion batteries, Electrochim. Acta, 2010, 55(27), 8051.

Kang K, Lee H-S, Han D-W, Kim G-S, Lee D, Lee G, Kang Y-M, Jo M-H, Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery, Appl. Phys. Lett., 2010, 96, 053110.

Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nature Mater., 2010, 9(4), 353.

Kuksenko S P, Kovalenko I O, Tarasenko Yu A, Kartel M T, Forming a Stable Amorphous Phase in the Carbon-Coated Silicon upon Deep Electrochemical Lithiation, Khimiya, Fizyka ta Tekhnologiya Poverhni (Chem. Phys.Technol. Surf.), 2010, 1(1), 57, (in Russian).

Kuksenko S P, Cycling parameters of silicon anode materials for lithium-ion batteries, Russ. J. Appl.Chem., 2010, 83(4), 641.

Kuksenko S P, Kovalenko I O, Synthesis of a silicon-graphite composite for the hybrid electrode of lithium-ion batteries, Russ. J. Appl. Chem., 2010, 83(10), 1811.

Kuksenko S P, Fundamentalnye problemy preobrazovaniya energii v litievyh elektrokhimicheskih sistemah (Fundamental problems of energy conversion in lithium electrochemical systems), 13–17 September 2010, Novocherkassk, Russia, (in Russian).

Hoffmann R, Solids and Surfaces a Chemistry view of Bonding in Extended Structures, Wiley VCH, New-York, 1988.

Lobanov V V, Gorlov Yu I, Chuiko A A, Rol' elektrostaticheskih vzaimodejstvij v adsorbtsii na poverhnosti tverdyh oksidov (Role of Electrostatic Interactions in Adsorption on Solid Oxide Surfaces), VEK+, Kyiv, 1999, (in Russian).




Copyright (©) 2011 S. P. Kuksenko, V. S. Kuts, Yu. A. Tarasenko, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.